МИНОБРНАУКИ России

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет» $(Tв\Gamma TY)$

УТВЕРЖДАЮ
заведующий кафедрой
Биотехнологии, химии и
стандартизации
(наименование кафедры)
М.Г. Сульман
(Ф.И.О. зав. кафедрой)
«» 20 г.

ОЦЕНОЧНЫЕ СРЕДСТВА

Промежуточной аттестации в форме экзамена

(промежуточной аттестации: экзамен, зачет, курсовая работа или курсовой проект; практики: с указанием вида и типа практики; государственного итогового экзамена)

КОЛЛОИДНАЯ ХИМИЯ Наименование дисциплины (для промежуточной аттестации) направление подготовки Направленность (профиль) — Медицинская и фармацевтическая химия научно-исследовательский Разработаны в соответствии с: Рабочей программой дисциплины «Коллоидная химия» утвержденной Проректором по УВР от «___» ______ 20___ г.

Разработчик(и): к.х.н., доцент, О.В. Кислица

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Медицинская и фармацевтическая химия Кафедра «Биотехнологии, химии и стандартизации» Дисциплина « Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Задание для проверки уровня «ЗНАТЬ» –0 или 1, или 2 балла: ДЭС по теории Штерна. Сравнительная характеристика термодинамического и электрокинетического потенциалов.
 - 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла:

Ниже приведены результаты измерения среднеквадратичного сдвига частиц

суспензии гуммигута в воде, полученные Перреном:

Время сдвига, с	30	60	90	120
Сдвиг, мкм	7,09	10,65	11,31	12,00

На основании этих результатов вычислите среднее значение числа Авогадро. Радиус частиц суспензии 0,212 мкм, температура опыта 290 К, вязкость среды $\eta = 1,1\cdot 10^{-3}$ Па·с.

3. Задание для проверки уровня УМЕТЬ – 0 или 2 балла:

Аэрозоль ртути сконденсировался в виде большой капли объемом 3,5 см 3 . Определите, насколько уменьшилась поверхностная энергия ртути, если дисперсность аэрозоля составляла 10 мкм $^{-1}$. Поверхностное натяжение ртути примите равным 0,475 Дж/м 2 .

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина « Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Дифильность молекул и их ориентация на межфазной поверхности (приведите примеры). Стандартная работа адсорбции. Растворимые ПАВ. Уравнение Шишковского. Правило Дюкло-Траубе. Связь уравнения Гиббса с уравнением Ленгмюра.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Найти удельную поверхность угля, если известно, что угольная пыль предварительно просеивается через сита с отверстиями в $0,075\cdot10^{-3}$ м. Плотность угля $\gamma=1,8\cdot10^3$ кг/м³. Систему считать монодисперсной.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Как изменится величина порога коагуляции, если для коагуляции $10\cdot10^{-6}$ м³ золя AgI вместо $1,5\cdot10^{-6}$ м³ KNO₃ концентрации 1 кмоль/м³ взять $0,5\cdot10^{-6}$ м³ Ca(NO₃)₂ концентрации 0,1 кмоль/м³ или $0,2\cdot10^{-6}$ м³ Al(NO₃)₃ концентрации 0,01 кмоль/м³? Полученные величины порога коагуляции сопоставить с зависимостью от валентности ионов, установленной Б.В.Дерягиным.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина « Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Изотерма поверхностного натяжения ПАВ. Адсорбционная формула Гиббса. Поверхностная активность. Построение изотермы адсорбции по изотерме поверхностного натяжения.
 - 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла:

По экспериментальным данным капиллярной конденсации метилового спирта на силикагеле (при 293 К) построить петлю гистерезиса, интегральную и

дифференциальную кривые распределения пор сорбента по радиусам

Равновесное давление $p \cdot 10^{-2}$, H/M^2	16	32	64	79	96	110	128			
Величина сорбции $\Gamma \cdot 10^3$, кмоль/кг										
Кривая адсорбции	2,5	3,5	4,8	6,3	13,0	19,0	22,5			
Кривая десорбции	2,5	3,5	4,8	6,5	17,5	21,2	22,5			

Молярный объем метилового спирта $V=0.0406~{\rm m}^3/{\rm к}$ моль, давление насыщенного пара $p_s=128~10^2$, ${\rm h/m}^2$, поверхностное натяжение $\sigma=2.6\cdot 10^{-3}~{\rm дж/m}^2$.

3. Задание для проверки уровня «УМЕТЬ» – 0 или 2 балла:

Рассчитать и построить в координатах $\frac{1}{n} = f(\tau)$ кривую изменения общего числа

частиц при коагуляции тумана минерального масла для следующих интервалов времени τ , сек: 60, 120, 240, 480 и 600. Средний радиус частиц $r=2\cdot 10^{-7}$ м, концентрация $c=25\cdot 10^{-3}$ кг/м³, плотность $\gamma=0.97\cdot 10^3$ кг/м³. Время половинной коагуляции $\theta=240$ сек.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Адсорбция на пористых материалах. Пористые материалы дисперсные системы с твердой дисперсионной средой. Пористость. Высокопористые материалы корпускулярной, кристаллической и губчатой структуры и методы их получения.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Вычислить по формуле Ленгмюра величину адсорбции изоамиловаго спирта концентрации c = 0.1 кмоль/м³ на поверхности раздела водный раствор воздух при 292 К по данным константам: $\Gamma_{\infty} = 8.7 \cdot 10^{-9}$ кмоль/м³, b = 42.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Экспериментально получены данные коагуляции гидрозоля золота раствором NaCl.Вязкость среды $\eta=10^{-3}~\text{H·cek/m}^2$, T=293~K. Рассчитать константу Смолуховского К и сравнить ее с константой, вычисленной по формуле $K=\frac{4RT}{3nN}$.

Время коагуляции т, сек	0	60	120	420	900
Общее число частиц в 1 м ³ n·10 ⁻¹⁴	5.22	4.35	3.63	2.31	1.48

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5

1. Задание для проверки уровня «ЗНАТЬ» –0 или 1, или 2 балла: Классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды.

2. Задание для проверки уровня «УМЕТЬ» – 0 или 2 балла:

По данным сорбции углекислого газа на угле построить изотерму адсорбции и

определить константы уравнения Фрейндлиха:

Равновесное давление $p \cdot 10^{-2}$, H/M^2	5,0	103,0	30,0	50,0	75,0	100,0
Величина сорбции $\Gamma \cdot 10^3$, кг/кг	3,0	5,5	16,0	23,0	31,0	35,0

3. Задание для проверки уровня «УМЕТЬ – 0 или 2 балла:

Определить изменение общего числа частиц газовой сажи п при коагуляции под действием ультразвука в следующих интервалах времени τ , сек: 1, 10, 100. До коагуляции в 1 м³ воздуха содержалось $5\cdot10^{15}$ частиц. Константа Смолуховского $K = 3\cdot10^{-16}\,\mathrm{m}^3/\mathrm{cek}$.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Адсорбция на границе раздела: жидкость-газ. Вывод адсорбционной формулы Гиббса. Применение этой формулы для случая, когда адсорбирующееся вещество растворимо в жидкости. Поверхностная активность.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Используя константы уравнения Шишковского (а = 12,6·10⁻³, b = 21,5), рассчитать поверхностное натяжение для водных растворов масляной кислоты при 273 К для следующих концентраций (кмоль/м³): 0,007, 0,021, 0,05, 0,104 и построить кривую в координатах $\sigma = f(c)$. Поверхностное натяжение воды $\sigma_0 = 75,49 \cdot 10^{-3}$ н/м.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Пользуясь графическим методом, найти постоянные Q_m и τ_0 и, рассчитав по уравнению седиментации, построить кривую оседания песка в анилине для следующих интервалов времени τ : 180, 720, 1080, 1500, 1800 и 3600 сек. Для построения использовать следующие данные:

Время оседания	60	300	600	1200	1800	3000	4200
т, сек	00	300	000	1200	1000	3000	4200
Количество осевшей суспензии Q, %	12,9	55,2	73,0	86,5	92,3	98,0	100

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6;

«хорошо» – при сумме баллов 4;

«удовлетворительно» – при сумме баллов 3;

«неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Электрокинетический потенциал. Влияние различных факторов на электрокинетический потенциал: индифферентных и неиндифферентных электролитов, разбавления, концентрирования, рН среды и др.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Определить величину удельной поверхности суспензии каолина (плотность которого $\gamma = 2.5 \cdot 103 \text{ кг/м}^3$), если ее частицы принять шарообразными и средний диаметр частиц считать равным $0.5 \cdot 10-6 \text{ м}$. Суспензию считать монодисперсной.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: При ультрамикроскопическом исследовании гидрозоля серебра в кювете площадью $5,4\cdot10^{-12}$ м² и глубиной пучка света $2,5\cdot10^{-4}$ м подсчитано 2 частицы. Рассчитать среднюю длину ребра частиц, принимая их форму за кубическую. Концентрация золя с = $20\cdot10^{-2}$ кг/м³, плотность серебра $\gamma = 10,5\cdot10^{3}$ кг/м³.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Получение коллоидных систем методом диспергирования. Механическое диспергирование. Адсорбционное понижение прочности твердых тел (АПП). Присутствие каких веществ вызывает АПП. Работы Ребиндера.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Рассчитайте работу адгезии в системе вода-графит, зная, что краевой угол равен 90°, а поверхностное натяжение воды составляет 71,96 мДж/м². Определите коэффициент растекания воды на графите.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Методом поточной ультрамикроскопии в объеме $W=1,5\cdot 10^{-11}$ м³ подсчитано 53 частицы аэрозоля масляного тумана. Считая форму частиц сферической, определить их средний радиус. Концентрация золя $c=21\cdot 10^{-6}$ кг/м³, плотность $\gamma=0,92\cdot 10^3$ кг/м³.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Поверхностное натяжение и электрический потенциал. Механизмы образования двойных электрических слоев (ДЭС). Связь межфазного электрического потенциала с поверхностным натяжением уравнение Липмана.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Найти поверхностное натяжение анилина, если с помощью сталагмометра Траубе получены следующие данные: число капель анилина 42, плотность его $\gamma = 1,4~\rm kr/m^3$, число капель воды 18. Температура опыта 288 К. Поверхностное натяжении е воды $\sigma_0 = 73,26\cdot 10^{-3}~\rm h/m$.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Сравнить интенсивности светорассеяния эмульсий бензина в воде (показатель преломления $\mathbf{n}_1 = 1,38$) и тетралина в воде ($\mathbf{n}_1 = 1,54$) при 293 К. Показатель преломления воды $\mathbf{n}_0 = 1,33$. Размер частиц и концентрация эмульсий одинаковы.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № <u>10</u>

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Кинетическая и агрегативная устойчивость коллоидных систем. Молекулярные и ионные стабилизаторы. Механизм их действия. Приведите примеры стабилизации коллоидных систем.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Найти адсорбцию пропионовой кислоты на поверхности раздела водный раствор-воздух при 273 К и концентрации 0,5 кмоль/м³ по константам Шишковского: $a = 12.5 \cdot 10^{-3}$ и b = 7.73.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Рассчитать средний радиус частиц гидрозоля латекса полистирола, пользуясь данными, полученными с помощью нефелометра: высота освещенной части стандартного золя $h_1 = 8 \cdot 10^{-3}$ м, средний радиус частиц $r_1 = 88 \cdot 10^{-9}$ м, высота освещенной части неизвестного золя $h_2 = 8 \cdot 10^{-3}$ м. Концентрации стандартного и неизвестного золя равны.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 11

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Явление перезарядки коллоидных частиц. Изменение величины электрокинетического и диффузионного потенциалов при перезарядке.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Какова площадь, приходящаяся на одну молекулу изомасляной кислоты на поверхности раздела водный раствор-воздух, если предельная адсорбция $\Gamma_{\infty} = 6.0 \cdot 10^{-9}$ кмоль/м³.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Проверить графически применимость закона Ламберта-Бера к гидрозолю кубового синего красителя, используя экспериментальные данные

 спектрофотометрического метода:

 Концентрация золя $c \cdot 10^3$, $\kappa \Gamma / M^3$ 20,0
 40,0
 60,0
 70,0

 Оптическая плотность D_{λ} 0,2
 0,38
 0,55
 0,67

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Основы теории устойчивости и коагуляции ДЛФО. Потенциальные кривые взаимодействия частиц. Расклинивающее давление. Электростатическая и молекулярная составляющие.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Определите дисперсность золя ртути, частицы которого имеют сферическую форму. Диаметр частиц 6.66·10⁻⁶ м.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Критическая концентрация мицеллообразования (ККМ) додецил-сульфата натрия при 20, 40 и 60°С составляет соответственно 1,51·10⁻³; 1,62·10⁻³ и 1,87·10⁻³ моль/л. Рассчитайте стандартную теплоту, энергию Гиббса и энтропию мицеллообразования при 20°С. Постройте кривую кинетики набухания каучука в четыреххлористом углероде в координатах α - τ по следующим экспериментальным данным:

Время набухания т, мин	5	30	90	150	210	240	270	300
Степень набухания α	0.33	1.15	2.33	2.91	3.25	3.41	3.58	3.58

Определите графическим способом константу скорости набухания К.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Адсорбция электролитов. Основные закономерности. Влияние радиуса и гидратации ионов на адсорбцию. Лиотропные ряды ионов.
 - 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла:

Определить графически критическую концентрацию мицеллообразования водного раствора некаля, используя экспериментальные данные оптического метола:

Концентрация раствора, с 10 ² , %	0,25	0,5	0,75	1,0	1,5	2,0	2,5	3,0	3,5
Мутность раствора τ 10 ⁶ , м ⁻¹	0,029	0,030	0,035	0,08	0,5	0,85	1,25	1,50	1,60

3. Задание для проверки уровня «УМЕТЬ» – 0 или 2 балла:

Какие дисперсные системы можно получить при смешивании равных объемов:

- а) 0,003 н раствора $FeCl_3$ и 0,001н раствора $K_4Fe(CN)_6$;
- б) насыщенных растворов KeC1₃ и K₄Fe(CN)₆?

Чем они отличаются друг от друга?

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 14

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Седиментация. Уравнение седиментационного анализа. Принципы построения кривых оседания частиц и кривых распределения массы частиц по размерам. Уравнение Сведберга-Одена.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Определить величину мицеллярного веса некаля в его водном растворе, пользуясь экспериментальными данными светорассеяния (постоянная Дебая $H = 40 \ 10^{-12}$):

Концентрация раствора, с, $\kappa \Gamma/M^3$	5,0	10,0	15,0	20,0	25,0
Мутность раствора $\tau 10^5$, м ⁻¹	0,30	0,45	0,60	0,70	0,72

3. Задание для проверки уровня «УМЕТЬ» — 0 или 2 балла: Нарисуйте схему строения и обозначьте части мицеллы золя йодида серебра, полученного добавлением 40 мл 0.02н раствора AgNO₃ к 50 мл 0,001н раствора KI. Каким методом получен золь?

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Определение размеров и формы коллоидных частиц с помощью электронной микроскопии, рентгенографии, электронографии, двойного лучепреломления.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Вычислить средний радиус мицелл мыла сферической формы, если величина их коэффициента диффузии D в воде при температуре 313 К равнялась $0.69\ 10^{-11}\ \text{m}^2$ /сек. Вязкость среды $\eta=8\ 10^{-4}\ \text{h}$ сек/ m^2 .
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: При электрофорезе частицы золя хлорида серебра, полученного смешением равных объемов растворов нитрата серебра и хлорида натрия, перемещаются к аноду. Одинаковы ли исходные концентрации электролитов?

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 16

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Исследование структуры дисперсных систем методом снятия кривых развития деформации при P=const. Прибор Толстого.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Вычислить ζ -потенциал коллоидных частиц трехсернистого мышьяка в воде, если при электрофорезе за 180 сек граница сместилась на 5,4·10⁻² м. Градиент внешнего поля $H = 8 \cdot 10^{-2}$ в/м, вязкость среды $\eta = 10^{-3}$ н·сек/м², диэлектрическая проницаемость $\varepsilon = 81$, электрическая константа $\varepsilon_0 = 8.85 \cdot 10^{-12}$ ф/м.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Окрашенное пятно, образующееся при нанесении капли гидрозоля берлинской лазури на фильтровальную бумагу, не растекается. Какой заряд имеют коллоидные частицы золя? В избытке какого реагента получен золь? Напишите формулу мицелл золя и назовите отдельные ее части.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 17

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Абсорбция света коллоидными системами. Уравнение Ламберта-Бугера-Беера и его применение к золям. "Белые золи" и их фиктивная абсорбция. Особенности света металлических золей.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Вычислить величину ζ -потенциала на границе водный раствор KCI мембрана из полистирола. В процессе электроосмоса объемная скорость равнялась $15\cdot10^{-10}$ м³/сек, сила тока $I=7\cdot10^{-3}$ А, удельная электропроводность среды $\kappa=9\cdot10^{-2}$ Ом $^{-1}\cdot \text{м}^{-1}$, вязкость $\eta=10^{-3}$ н·сек/м², диэлектрическая проницаемость $\epsilon=81$, электрическая константа $\epsilon_0=8,85\cdot10^{-12}$ ф/м.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Какова вязкость глицерина, если из капилляра длиной $\mathbf{l} = \mathbf{6 \cdot 10^{-2}}$ м с радиусом сечения $\mathbf{r} = \mathbf{1 \cdot 10^{-3}}$ м он вытекает со скоростью $\frac{v}{\tau} = \mathbf{14 \cdot 10^{-10}}$ м³/сек под давлением $\mathbf{p} = \mathbf{200} \ \mathbf{h/m^2}$?

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Основные реологические величины при исследовании упруго-кинетических свойств структурированных частиц.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Найти объемную скорость электроосмоса, наблюдаемого в системе водный раствор КСІ мембрана из полистирола, окрашенная жировым коричневым красителем. ζ -потенциал $6\cdot10^{-3}$ в, сила тока $I=7\cdot10^{-3}$ А, удельная электропроводность среды $\kappa=9\cdot10^{-2}$ Ом $^{-1}\cdot$ м $^{-1}$, вязкость $\eta=10^{-3}$ н \cdot сек/м 2 , диэлектрическая проницаемость $\epsilon=81$, электрическая константа $\epsilon_0=8,85\cdot10^{-12}$ ф/м.
- 3. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Вычислить величину среднего сдвига коллоидных частиц гидрозоля гидрата окиси железа при 293 К за время $\tau = 4$ сек, если радиус частиц $r = 10^{-8}$ м, вязкость воды $\eta = 10^{-3}$ н·сек/м².

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Определение констант уравнения Ленгмюра: их физический смысл. Константа адсорбционно-десорбционного равновесия и ее связь с температурой и теплотой адсорбции.
 - 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла:

Построить кривую изменения ζ-потенциала на границе кварцевая мембрана - раствор KCl в зависимости от диаметра пор мембраны. При электроосмосе получены следующие экспериментальные данные (без поправок на

поверхностную проводимость):

Диаметр пор $d \cdot 10^6$, м	2,0	5,0	10,0	25,0
Объемная скорость $v \cdot 10^5$, m^3 /сек	9,5	18,7	27,3	35,5

сила тока $I = 2 \cdot 10^{-5}$ А, удельная электропроводность среды $\kappa = 1,5 \cdot 10^{-3}$ Ом⁻¹·м⁻¹, вязкость $\eta = 10^{-3}$ н·сек/м², диэлектрическая проницаемость $\varepsilon = 81$, электрическая константа $\varepsilon_0 = 8,85 \cdot 10^{-12}$ ф/м.

3. Задание для проверки уровня «УМЕТЬ» – 0 или 2 балла:

Найти скорость оседания частиц суспензии каолина в воде при 288 К. Радиус частиц $r=2\cdot 10^{-6}$ м, плотность каолина $\gamma=2,2\cdot 10^{3}$ кг/м³, вязкость воды $\eta=1,14\cdot 10^{-3}$ н·сек/м².

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6; «хорошо» – при сумме баллов 4; «удовлетворительно» – при сумме баллов 3; «неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС

«Тверской государственный технический университет»

Направление подготовки магистров 04.04.01 Химия Профиль – Химия функциональных наноматериалов Кафедра «Биотехнологии, химии и стандартизации» Дисциплина «Коллоидная химия» Семестр 7

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 20

- 1. Задание для проверки уровня «ЗНАТЬ» —0 или 1, или 2 балла: Вывод уравнения Гиббса. Понятие об абсолютной Гиббсовой адсорбции.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла:

Показать на графике изменение потенциала течения на границе диафрагма из кварцевого порошка – раствор NaCl при увеличении концентрации NaCl,

пользуясь следующими экспериментальными данными:

Концентрация NaCl c, кмоль/м ³	Дист. вода	1.10-4	5.10-4	1.10-3
Удельная электропроводность среды κ , $\text{Om}^{-1} \cdot \text{M}^{-1}$	2,13·10 ⁻⁴	2,06·10 ⁻³	7,94·10 ⁻³	15,4·10 ⁻³
Величина ζ-потенциала·10 ³ , в	44,0	96,0	108,0	100,0

Вязкость среды $\eta = 10^{-3}$ н·сек/м², давление $p = 50 \cdot 10^2$ н/м², диэлектрическая проницаемость $\varepsilon = 81$, электрическая константа $\varepsilon_0 = 8,85 \cdot 10^{-12}$ ф/м.

3. Задание для проверки уровня «УМЕТЬ» - 0 или 2 балла:

Используя экспериментальные данные седиментации молотого песка в воде, построить дифференциальную кривую распределения по радиусам:

	1 7 1 1 1 1 1							1 ' '						
Врем т, сек	я оседан	ия			60	90	120	180	300	600	900	1800		
Коли Q,%	чество	осеві	пей	суспензии	42	55	61	73	80	94	97	100		

Плотность песка $\gamma = 2.1 \cdot 10^3$ кг/м³, плотность воды $\gamma_0 = 1.0 \cdot 10^3$ кг/м³, вязкость воды $\eta = 1 \cdot 10^{-3}$ н·сек/м². Высота $h = 11 \cdot 10^{-2}$ м.

Критерии итоговой оценки за экзамен:

«отлично» – при сумме баллов 5 или 6;

«хорошо» – при сумме баллов 4;

«удовлетворительно» – при сумме баллов 3;

«неудовлетворительно» – при сумме баллов 0, 1 или 2.

Составитель: доц. кафедры БХС О.В. Кислица

Заведующий кафедрой БХС