МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет» (ТвГТУ)

« »		- 2021 г.
		Э.Ю. Майкова
работе		
Проректо	р по учеб	ной
УТВЕРЖ	ДАЮ	

РАБОЧАЯ ПРОГРАММА

дисциплины обязательная части Блока 1 «Дисциплины (Модули)» «Физика»

Направление подготовки 23.05.01 Наземные транспортно-технологические средства Специализация программы – Технические средства природообустройства и защиты в чрезвычайных ситуациях

Типы задач профессиональной деятельности: проектно-конструкторский

Форма обучения – очная.

Факультет природопользования и инженерной экологии Кафедра «Общая физика»

Рабочая программа дисциплины соответствует ОХОП п стов в части требований к результатам обучения по дисциплине	
Разработчик программы: доцент кафедры ОФ	П.И. Дергунов
Программа рассмотрена и одобрена на заседании кафедры обще «_25_»01 2021 г., протокол № _4	ей физики
Заведующий кафедрой	А.В. Твардовский
Согласовано	
Начальник учебно-методического отдела УМУ	Д.А. Барчуков
Начальник отдела комплектования	

О.Ф. Жмыхова

зональной научной библиотеки

1. Цели и задачи дисциплины

Целью изучения дисциплины «Физика» является формирование цельного представления о физических законах окружающего мира в их единстве и взаимосвязи для решения научно-технических задач в теоретических и прикладных аспектах и необходимой основы для более глубокого и эффективного овладения последующими дисциплинами общетехнического и профессионального циклов.

Задачами дисциплины являются: изучение основных физических явлений; овладение фундаментальными понятиями, законами и теориями физики, а также методами физического исследования; овладение методами решения конкретных задач из различных областей физики; формирование навыков проведения физического эксперимента, умения выделять конкретное физическое содержание в прикладных задачах учебной и профессиональной деятельности, умение критично оценивать полученные результаты.

2. Место дисциплины в структуре ООП

Дисциплина относится к обязательной части Блока 1 ОП ВО. Изучение дисциплины требует необходимой подготовки в области физики, астрономии, химии и математики в соответствии с утвержденными программами для среднего образования.

Приобретенные знания рамках данной дисциплины В помимо ИΧ самостоятельного необходимы значения В дальнейшем при изучении общетехнических и общепрофессиональных дисциплин, таких как теоретическая электротехника электроника, гидравлика гидропривод, механика, теплотехника, сопротивление материалов, метрология, термодинамика И стандартизация и сертификация и др.

3. Планируемые результаты обучения по дисциплине

3.1. Планируемые результаты обучения по дисциплине»

Компетенции, закрепленные за дисциплиной в ОХОП:

ОПК-1. Способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей.

Индикаторы компетенций, закрепленных за дисциплиной в ОХОП:

ИОПК-1.4. Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма.

ИОПК-1.5. Демонстрирует знание элементарных основ оптики, квантовой механики и атомной физики.

Показатели оценивания индикаторов достижения компетенций Знать:

- 31. Основные физические явления и основные законы физики; границы их применимости, применение законов в важнейших практических приложениях.
- 32. Основные физические величины и физические константы, их определение, смысл и единицы их измерения.
- 33. Назначение и принципы действия важнейших физических приборов, основные экспериментальные методы измерения физических величин.

Уметь:

- У1. Объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций законов физики;
- У2. Применять физические законы для решения теоретических и практических задач.
- УЗ. Истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ.
- У4. Работать с приборами и оборудованием современной физической лаборатории.
 - У5. Обрабатывать и интерпретировать результаты физических экспериментов

3.2. Технологии, обеспечивающие формирование компетенций

Проведение лекционных и практических занятий, выполнение лабораторных работ, самостоятельная работа.

4. Трудоемкость дисциплины и виды учебной работы

Таблица 1. Распределение трудоемкости дисциплины по видам учебной работы

Вид учебной работы	Зачетные	Академические
Did y reason paragraph	единицы	часы
Общая трудоемкость дисциплины	12	432
Аудиторные занятия (всего)		210
В том числе:		
Лекции		90
Практические занятия (ПЗ)		45
Лабораторный практикум (ЛР)		75
Самостоятельная работа обучающихся (всего)		150+72 (экз)
В том числе:		
Курсовая работа		не предусмотрена
Курсовой проект		не предусмотрен
Расчетно-графические работы		не предусмотрены
Реферат		не предусмотрен
Другие виды самостоятельной работы:		
- изучение теоретической части дисциплины		
- подготовка к защите лабораторных работ		100
- решение задач		100
- выполнение коллоквиумов		
Текущий контроль успеваемости и промежуточная		50+72 (экз)
аттестация (балльно-рейтинговый, зачет, экзамен)		30172 (3R3)

5. Структура и содержание дисциплины

5.1. Структура дисциплины

Таблица 2. Модули дисциплины, трудоемкость в часах и виды учебной работы.

No	Наименование	Труд-ть	Лекции	Практич.	Лаб.	Сам.
	Модуля	часы		занятия	работы	работа
	T		семестр			
1	Механика	96	20	10	20	46
2	Молекулярная физика и термодинамика	48	10	5	10	23
Bce	го на 1 семестр	144	30	15	30	69
	-	2 (семестр			
3	Электричество и	100	22	11	22	25+26(экз)
	магнетизм	100 22				====(===)
4	Волновая оптика	44	8	4	8	8+10(экз)
Bce	го на 2 семестр	144	30	15	30	33+36(экз)
		3 (семестр			
5	Квантовая оптика	34	8	4	4	18+10(экз)
6	Физика твердого тела. Атомная и ядерная физика.	110	22	11	11	30+20(экз)
Bce	го на 3 семестр	144	30	15	15	48+36(экз)
Bce	го на дисциплину	432	90	45	75	150+72(экз)

5.2. Содержание дисциплины.

МОДУЛЬ 1. «МЕХАНИКА»

Кинематика материальной точки: система отсчета, радиус-вектор, траектория, перемещение, путь, скорость, нормальное и тангенциальное ускорение; уравнения движения. Динамика материальной точки: законы Ньютона, импульс, работа, кинетическая и потенциальная энергия, законы сохранения импульса и энергии; потенциальные кривые. Кинематика вращательного движения твердого тела: угол поворота, угловая скорость, угловое ускорение; связь между угловыми и линейными характеристиками движения. Динамика вращательного движения: момент силы, момент инерции, теорема Штейнера, момент импульса, кинетическая энергия вращательного движения; основной закон динамики вращательного движения. Свободные незатухающие колебания. Амплитуда, фаза, частота и период колебаний. Затухающие и вынужденные колебания. Механические волны.

МОДУЛЬ 2. «МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА»

Молекулярно-кинетический и термодинамический подходы к исследованию свойств вещества, их различие и взаимосвязь. Идеальный газ. Параметры состояния. Уравнение состояния. Основное уравнение молекулярно-кинетической теории. Степени свободы и средняя кинетическая энергия молекул. Эффективный диаметр и средняя длина свободного пробега. Распределения Максвелла и Больцмана. Первое начало термодинамики в различных изопроцессах. Второе начало термодинамики. Энтропия. Кинетические явления: диффузия, теплопроводность, внутреннее трение. Реальные газы.

МОДУЛЬ 3. «ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ»

Взаимодействие зарядов. Электростатическое поле и его характеристики: напряженность, потенциал. Теорема Гаусса. Поляризация диэлектриков. Проводники в электрическом поле. Электроемкость. Конденсаторы. Энергия электрического поля. Электрический ток: сила тока, плотность тока, ЭДС, напряжение. Закон Ома для участка цепи, для замкнутой цепи, в дифференциальной форме. Закон Джоуля-Ленца. Взаимодействие проводников с током. Магнитное поле и его характеристики: напряженность и магнитная индукция. Закон Био-Савара-Лапласа. Сила Лоренца, сила Ампера. Магнитное поле в веществе; ферромагнетики. Движение заряженных частиц в электрическом и магнитном полях. Магнитный поток. Электромагнитная индукция. Самоиндукция. Индуктивность. Энергия магнитного поля. Электромагнитные колебания. Взаимосвязь электрического и магнитного полей. Система уравнений Максвелла в интегральной форме и физический смысл входящих в нее уравнений. Электромагнитные волны.

МОДУЛЬ 4. «ВОЛНОВАЯ ОПТИКА»

Свет как электромагнитная волна. Световой вектор. Интерференция света и способы ее наблюдения. Дифракция Френеля и Фраунгофера. Дифракционная решетка как спектральный прибор. Поляризация, дисперсия и поглощение света.

МОДУЛЬ 5. «КВАНТОВАЯ ОПТИКА»

Тепловое излучение. Законы Кирхгофа, Вина, Стефана-Больцмана. Гипотеза и формула Планка. Фотоэффект. Уравнение Эйнштейна. Фотоны. Дуализм света. Давление света. Эффект Комптона.

МОДУЛЬ 6. «ФИЗИКА ТВЕРДОГО ТЕЛА. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА.»

Спектр излучения атома водорода. Формула Бальмера. Опыт Резерфорда. Постулаты Бора. Элементы квантовой механики: гипотеза Де-Бройля, соотношение неопределенностей, волновая функция, ее статистический смысл и условия, которым она должна удовлетворять, уравнение Шредингера, квантовая частица в одномерной потенциальной яме. Состав атомного ядра. Ядерные силы. Энергия связи ядра. Радиоактивность: альфа- и бета-распады. Ядерные реакции и их энергетический эффект. Деление ядер. Синтез ядер. Фундаментальные взаимодействия и основные классы элементарных частиц. Частицы и античастицы. Лептоны и адроны. Кварки.

5.3. Лабораторный работы

Таблица 3. Тематика, форма лабораторных работ (ЛР) и их трудоемкость

Модули.	Наименование	Трудоемкость
Цели лабораторных работ	лабораторных работ	в часах
Модуль 1	1. Изучение погрешно-	5
Цель: знакомство с погрешностями измерения, по-	стей измерения	
лучение навыков оценки случайной и приборной	ускорения свободно-	
погрешности, доверительного интервала измере-	го падения с помо-	
ний, записи окончательного результата измерений	щью математическо-	
величин, графического представления результатов	го маятника.	
измерения и определение коэффициентов линейной	2. Определение коэф-	5
зависимости по графику и методом наименьших	фициента вязкости	

Модули.	Наименование	Трудоемкость
Цели лабораторных работ	лабораторных работ	в часах
квадратов; практическое изучение законов движе-	жидкости по методу	
ния тела в вязкой среде, законов вращательного	Стокса.	
движения твердого тела и свободных колебаний	CTOR CU.	
пружинного маятника; экспериментальное опреде-	3. Изучение законов	5
ление коэффициента вязкости жидкости, момента	вращательного дви-	3
инерции тела, коэффиента жесткости пружины и	жения на маятнике	
коэффициента сопротивления среды.	Обербека.	
коэффициента сопротивления среды.	*	5
		3
N	НИК.	5
Модуль 2	1. Определение коэф-	5
Цель: закрепление навыков оценки случайной и	фициента вязкости	
приборной погрешности, доверительного интерва-	воздуха.	_
ла измерений, записи окончательного результата	2. Определение отно-	5
изме-рений величин; практическое изучение явле-	шения теплоемко-	
ния внутреннего трения в газах, первого начала	стей газа методом	
термодинамики и графических зависимостей ха-	адиабати-ческого	
рактеристик газов; экспериментальное определение	расширения.	
коэффициента вязкости воздуха и показателя адиа-		
баты для воздуха; оценка средней длины свободно-		
го пробега молекул и их эффективного диаметра.		
Модуль 3	1. Изучение закона	4
Цель: закрепление навыков графического пред-	Ома.	
ставления результатов измерения и определение	2. Исследование элек-	6
коэффициентов линейной зависимости по графику;	тростатического по-	
знакомство с простейшими электрическими схема-	ля.	
ми и электро-измерительными приборами, приоб-	3. Определение гори-	4
ретение навыков сборки электрических цепей; экс-	зонтальной состав-	
периментальная проверка закона Ома, построение	ляю-щей магнитного	
эквипотенциальных и силовых линий электроста-	поля Земли.	
тического поля, практическое изучение магнитного	4. Определение удель-	4
поля кругового тока и принципа суперпозиции по-	ного заряда электро-	
лей, экспериментальное определение горизонталь-	на методом магнит-	
ной составляющей магнитного поля Земли, изуче-	ной фокусировки.	
ние движения заряженных частиц в электрических	5. Изучение магнитных	4
и магнитных полях; расчет характеристик элктро-	свойств ферромагне-	•
статического поля по результатам эксперименталь-	тиков.	
ного исследования, снятие основной кривой намаг-	тиков.	
ничения и петли гистерезиса ферромагнетика; экс-		
1 1 1		
электрона.	1 Hymandanayyyya ana	1
Модуль 4	1. Интерференция све-	4
Цель: наблюдение интерференционных и дифрак-	та. Опыт Юнга.	A
ционных картин от различных источников, экспе-	2. Изучение дифракции	4
риментальное определение длины волны лазерного	света на одиночной	
излучения, ширины щели и периода дифракцион-	щели и дифракцион-	
ной решетки.	ной решетке.	2
Модуль 5	1. Изучение законов	2
Цель: закрепление навыков определения коэффи-	теплового излучения	
циентов линейной зависимости методом наимень-	с помощью яркост-	
ших квадратов; ознакомление с принципом дей-	ного пирометра.	

Модули.	Наименование	Трудоемкость
Цели лабораторных работ	лабораторных работ	в часах
ствия яркостного пирометра и практическое изме-	2. Фотоэффект.	2
рение яркостной температуры нагретого тела; при-		
менение закона Кирхгофа и формулы Планка для		
определения истинной температуры тела, экспери-		
ментальная проверка справедливости закона Сте-		
фана-Больцмана; практическое изучение законов		
фотоэффекта, снятие вольт-амперной характери-		
стики (ВАХ) вакуумного фотоэлемента.		
Модуль 6	1. Изучение оптичес-	5
Цель: работа с нелинейными графическими зави-	ких спектров испус-	
симостями; ознакомление с устройством и принци-	кания. Атом водоро-	
пом работы спектроскопа, градуировка спектро-	да	
скопа, наблюдение линейчатых спектров испуска-	2. Определение энер-	2
ния с помощью спектроскопа и по фотографиям,	гии активации полу-	
анализ спектра излучения атома водорода на осно-	проводника	
ве теории Бора; изучение температурной зависимо-	3. Снятие ВАХ полу-	2
сти сопротивления полупроводника, эксперимен-	проводникового ди-	
тальное определение энергии активации; изучение	ода.	
контактных явлений в полупроводниках, снятие	4. Радиоактивность.	2
вольт-амперной характеристики р-п-перехода;	Поглощение β-	
определение линейного коэффициента поглощения	излучения в воздухе.	
β-излучения в воздухе и активности радиоактивно-	_	
го препарата.		

5.4. Практические занятия

Таблица 4. Тематика, форма практических занятий (ПЗ) и их трудоемкость

Модули.	Примерная тематика	Трудоемкость
Цели практических занятий	практических занятий	в часах
Модуль 1	Кинематика материальной точ-	2
Цель: приобретение навыков определения	ки	
характеристик движения материальной точ-		
ки по уравнениям ее движения, построения		
графиков траектории движения точки с ука-	Динамика материальной точки	2
занием направления векторов скорости,		
нормального и тангенциального ускорений;		
применения законов Ньютона, сохранения	Zavavy aaymayayya waxaya aa y	2
импульса и энергии к решению практиче-	Законы сохранения импульса и	2
ских задач; определения угловой скорости и	энергии	
углового ускорения при вращательном дви-		
жении твердого тела, нахождения момента	Кинематика и динамика вра-	2
инерции с использованием теоремы Штей-	щательного движени	_
нера, определения моментов сил, работы и	щигольного дывжени	
кинетической энергии при вращательном		
движении; определения характеристик соб-	Механические колебания и	3
ственных и затухающих механических коле-	волны	
баний, длины волны, применения закона со-		
хранения энергии в колебательном процессе.		

Модули. Цели практических занятий	Примерная тематика	Трудоемкость
	практических занятий	в часах 4
Модуль 2	Определение характеристик	4
Цель: приобретение навыков определения	состояния идеального газа,	
параметров состояния идеального газа с по-	первое начало термодинамики	
мощью уравнения Менделеева-Клапейрона		
и газовых законов, построения графических		
зависимостей для различных процессов, рас-		
чета скоростей и энергий молекул идеально-		
го газа; применения первого и второго начал		
термодинамики для различных процессов.		
Модуль 3	Электростатика	3
Цель: приобретение навыков расчета		
напряженности и потенциала электростати-		
ческого поля; навыков применения законов	Законы постоянного тока	2
постоянного тока; применения принципа		_
суперпозиции полей и теоремы Гаусса; рас-		
чета напряженности магнитного поля и век-	Магнитное поле.Законы Ампе-	2
тора магнитной индукции для магнитных		2
полей, расчета сил, действующих на заря-	ра и Био-Савара-Лапласа	
женные частицы в электрическом и магнит-		_
ном полях, характеристик движения этих	Движение заряженных частиц	2
частиц и их траекторий; определения ЭДС	в электрическом и магнитном	
индукции, возникающей в контуре, времени	полях	
нарастания и убывания тока при замыкании	Явление электромагнитной ин-	2
и размыкании электрической цепи; приобре-	дукции	
тение навыков расчета характеристик соб-		
1 1		
ственных и затухающих электромагнитных		
колебаний, применения закона сохранения		
энергии в колебательном процессе.		2
Модуль 4	Интерференция света	2
Цель: определения положения максимумов		
и минимумов в интерференционной кар-		
тине; расчета дифракционной картины ме-	Дифракция и поляризация све-	2
тодом зон Френеля, определение положения	та	
главных максимумов в спектре от дифрак-		
ционной решетки, разрешающей способно-		
сти решетки.		
Модуль 5	Законы теплового излучения	2
Цель: приобретение навыков применения		
законов теплового излучения для расчета		
характеристик источников и приемников	Фотоэффект	2
теплового излучения, применения законов		
фотоэффекта для решения практических за-		
дач.		
Модуль 6	Постулаты Бора. Спектр атома	3
Цель: приобретение навыков расчета длин	водорода	
волн и частот спектральных линий атома	Бодороди	
водорода с помощью постулатов Бора и фор-		
мулы Бальмера, построение энергетической	Элементы квантовой механики	2
диаграммы атома водорода; расчет длины	Элементы кваптовой механики	<u> </u>
дны рамины атома водорода, расчет длины		

Модули.	Примерная тематика	Трудоемкость
Цели практических занятий	практических занятий	в часах
волны де Бройля, принятие решения о необ-		
ходимости применения квантовой механики		
при описании движения частиц, приобре-	Уравнение Шредингера. Пове-	4
тение навыков определения вероятности	де-ние частицы в бесконечно	
нахождения частицы на заданном отрезке в	глу-бокой одномерной потен-	
бесконечно глубокой одномерной потенци-	циаль-ной яме	
альной яме аналитически и по графику;	Закон радиоактивного распада,	2
применения закона радиоактивного распада	энергия связи ядра	
для решения задач, записи ядерных реакция,		
расчета энергии связи ядра		

6. Самостоятельная работа обучающихся и текущий контроль успеваемости

6.1. Цели самостоятельной работы

Формирование способностей к самостоятельному познанию и обучению, поиску литературы, обобщению, оформлению и представлению полученных результатов, их критическому анализу, поиску новых и неординарных решений, аргументированному отстаиванию своих предложений, умений подготовки выступлений и ведения дискуссий.

6.2. Организация и содержание самостоятельной работы

Самостоятельная работа заключается в изучении отдельных тем курса по заданию преподавателя по рекомендуемой им учебной литературе, в подготовке к лабораторным работам и практическим занятиям, к текущему контролю успеваемости, экзамену.

После лекции по соответствующей теме, студентам выдаются индивидуальные задачи для самостоятельного решения. Затем эти задачи разбираются и защищаются на практических занятиях.

Решение всех задач выданных для самостоятельного решения является необязательным, но количество решенных задач должно быть более 50%.

В рамках дисциплины выполняется 19 лабораторных работ, подготовка к которым выполняется студентами самостоятельно. Лабораторные работы защищаются посредством устного опроса. Выполнение всех лабораторных работ обязательно.

В случае невыполнения лабораторной работы студент выполняет ее под руководством лаборанта и защищает на занятиях или в часы дополнительных консультаций.

Текущий контроль успеваемости осуществляется с использованием модульнорейтинговой системы обучения и оценки текущей успеваемости обучающихся в соответствии с СТО СМК 02.102-2012.

7. Учебно-методическое и информационное обеспечение дисциплины.

7.1. Основная литература по дисциплине

- 1. Савельев, И.В. Курс общей физики: учеб. пособие для вузов по техн. (550000) и технолог. (650000) направлениям: в составе учебно-методического комплекса: в 3 т. Т. 1: Механика. Молекулярная физика / И.В. Савельев. 12-е изд.; стер. Санкт-Петербург [и др.]: Лань, 2016. (Учебники для вузов. Специальная литература). ЭБС Лань. Текст: электронный. ISBN 978-5-8114-0630-2. URL: https://e.lanbook.com/book/71760#book_name. (ID=108789-0)
- 2. Савельев, И.В. Курс общей физики: учеб. пособие для вузов по техн. (550000) и технолог. (650000) направлениям: в 3 т.: в составе учебно-методического комплекса. Т. 2: Электричество и магнетизм. Волны. Оптика / И.В. Савельев. 13-е изд.; стер. Санкт-Петербург [и др.]: Лань, 2017. (Учебники для вузов. Специальная литература). ЭБС Лань. Текст: электронный. ISBN 978-5-8114-0631-9. URL: https://e.lanbook.com/book/91065#book_name. (ID=108790-0)
- 3. Савельев, И.В. Курс общей физики: учеб. пособие для вузов по техн. (550000) и технолог. (650000) направлениям: в 3 т.: в составе учебно-методического комплекса. Т. 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / И.В. Савельев. 11-е изд.; стер. Санкт-Петербург [и др.]: Лань, 2017. (Учебники для вузов. Специальная литература). ЭБС Лань. Текст: электронный. ISBN 978-5-8114-0632-6. URL: https://e.lanbook.com/book/92652#book_name. (ID=108791-0)
- 4. Трофимова, Т.И. Курс физики : учеб. пособие для вузов / Т.И. Трофимова. 16-е изд. ; стер. М. : Академия, 2008. 558 с. : ил. (Высшее профессиональное образование). Текст : непосредственный. ISBN 978-5-7695-4956-4 : 369 р. 60 к. (ID=73550-184)

7.2. Дополнительная литература по дисциплине

- 1. Грабовский, Р. И. Курс физики: учебное пособие / Р. И. Грабовский. 12-е изд., стер. Санкт-Петербург: Лань, 2021. 608 с. ISBN 978-5-8114-0466-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/168382 (142433-0).
- 2. Ивлиев, А. Д. Физика: учебное пособие / А. Д. Ивлиев. 2-е изд., испр. Санкт-Петербург: Лань, 2021. 672 с. ISBN 978-5-8114-0760-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/167746 (142860-0)
- 3. Ливенцев, Н. М. Курс физики : учебник / Н. М. Ливенцев. 7-е изд., стер. Санкт-Петербург : Лань, 2021. 672 с. ISBN 978-5-8114-1240-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/168372 (142432-0).
- 4. Чертов, А.Г. Задачник по физике : учебное пособие для втузов / А.Г. Чертов, А.А. Воробьев. 8-е изд. ; перераб. и доп. Москва : Физматлит, 2007. 640 с. : ил. Текст : непосредственный. ISBN 5-94052-098-7 : 331 р. 10 к. (ID=61477-177)

- 5. Клингер, А.В. Задачник по физике с элементами теории и примерами решения : учебное пособие для вузов по направлению "Техника и технологии" / А.В. Клингер. 2-е изд.; испр. и доп. Москва : Флинта : Наука, 2008. 240 с. Библиогр. : с. 240. Текст : непосредственный. ISBN 978-5-9765-0214-7 (Флинта) : 120 р. (ID=67683-91)
- 6. Фирганг, Е.В. Руководство к решению задач по курсу общей физики: учебное пособие для вузов по техническим и технологическим направлениям и специальностям / Е.В. Фирганг. 4-е изд. Санкт-Петербург [и др.]: Лань, 2021. (Учебники для вузов. Специальная литература). ЭБС Лань. Текст: электронный. ISBN 978-5-8114-0765-1. URL: https://e.lanbook.com/book/167786. (ID=142436-0)
- 7. Калашников, Н.П. Физика. Интернет-тестирование базовых знаний: учебное пособие для вузов к Федерального интернет-тестированию по физике / Н.П. Калашников, Н.М. Кожевников. Санкт-Петербург [и др.]: Лань, 2009. (Учебники для вузов. Специальная литература). ЭБС Лань. Текст: электронный. ISBN 978-5-8114-0925-9. URL: http://e.lanbook.com/books/element.php?pl1_id=172. (ID=108785-0)

7.3. Методические материалы

- 1. Лабораторный практикум по физике. Ч. 1 : Механика и молекулярная физика / Тверской гос. техн. ун-т ; сост.: А.В. Твардовский [и др.]. Тверь : ТвГТУ, 2019. 95 с. Текст : непосредственный. ISBN 978-5-7995-1009-1 : 180 р. (ID=134115-72)
- 2. Лабораторный практикум по физике. Ч. 1 : Механика и молекулярная физика / Тверской гос. техн. ун-т ; сост.: А.В. Твардовский, П.И. Дергунов, А.В. Зубкова, С.Р. Испирян, И.В. Кривенко, В.И. Лашнев. Тверь : ТвГТУ, 2019. Сервер. Текст : электронный. ISBN 978-5-7995-1009-1 : 0-00. URL: http://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/133605. (ID=133605-1)
- 3. Лабораторный практикум по физике: учебное пособие. Ч. 2: Электричество, магнетизм и волновая оптика / Тверской государственный технический университет; сост.: А.В. Твардовский, П.И. Дергунов, А.В. Зубкова и [др.]. Тверь: ТвГТУ, 2020. 95 с. Текст: непосредственный. ISBN 978-5-7995-1009-1:180 р. (ID=136356-72)
- 4. Лабораторный практикум по физике : учебное пособие. Ч.2 : Электричество, магнетизм и волновая оптика / Тверской государственный технический университет ; сост.: А.В. Твардовский, П.И. Дергунов, А.В. Зубкова, С.Р. Испирян, И.В. Кривенко. Тверь : ТвГТУ, 2020. 95 с. Сервер. Текст : электронный. ISBN 978-5-7995-1009-1 : 180 р. URL: http://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/136032. (ID=136032-0)
- 5. Лабораторный практикум по физике: учебное пособие. Ч. 3: Квантовая оптика, атомная и ядерная физика / Тверской государственный технический университет; составители: А.В. Твардовский, П.И. Дергунов, А.В. Зубкова, С.Р. Испирян, И.В. Кривенко. Тверь: ТвГТУ, 2021. 96 с. Текст: непосредственный. ISBN 978-5-7995-1009-1: 201 р. (ID=142508-72)

- 6. Лабораторный практикум по физике: учебное пособие. Ч. 3: Квантовая оптика, атомная и ядерная физика / Тверской государственный технический университет; составители: А.В. Твардовский, П.И. Дергунов, А.В. Зубкова, С.Р. Испирян, И.В. Кривенко. Тверь: ТвГТУ, 2021. 96 с. Сервер. Текст: электронный. ISBN 978-5-7995-1009-1 : 0-00. URL: http://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/140509. (ID=140509-1)
- 7. Задачи по физике: метод. указ. к практ. занятиям: в составе учебнометодического комплекса. Ч. 1: Механика, молекулярная физика и термодинамика / Тверской гос. техн. ун-т, Каф. общей физики; сост.: В.М. Кошкин [и др.]. Тверь: ТвГТУ, 2012. 40 с. (УМК-П). Сервер. Текст: непосредственный. Текст: электронный. 19 р. URL: http://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/93102. (ID=93102-94)
- 8. Задачи по физике: метод. указания к контрольным работам для студентов заочного отделения. Ч. 1: Механика и молекулярная физика / сост.: В.М. Кошкин, С.Р. Испирян; Тверской гос. техн. ун-т. Тверь: ТвГТУ, 2011. 36 с. CD. Сервер. Текст: непосредственный. Текст: электронный. [б. ц.]. (ID=84984-3)
- 9. Задачи по физике : сборник заданий для практ. занятий. Ч. 2 : Электричество, магнетизм, волновая оптика / Тверской гос. техн. ун-т, Каф. общей физики ; сост.: С.Р. Испирян, И.В. Кривенко, А.В. Зубкова. Тверь : ТвГТУ, 2015. 36 с. : ил. Текст : непосредственный. 49 р. 50 к. (ID=110718-94)
- 10.Задачи по физике: сборник заданий для практ. занятий: в составе учебнометодического комплекса. Ч. 2: Электричество, магнетизм, волновая оптика / Тверской гос. техн. ун-т, Каф. общей физики; сост.: С.Р. Испирян, И.В. Кривенко, А.В. Зубкова. Тверь: ТвГТУ, 2015. (УМК-М). Сервер. Текст: электронный. 0-00. URL: http://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/110263. (ID=110263-1)
- 11.Задачи по физике: сборник задач для практ. занятий: в составе учебнометодического комплекса. Ч. 3: Оптика. Атомная физика. Квантовая механика. Ядерная физика / сост.: И.В. Кривенко, С.Р. Испирян, В.М. Кошкин; Тверской гос. техн. ун-т, Каф. ТФ. Тверь: ТвГТУ, 2008. 1 гиб. магнит. диск (дискета). (УМК-М). Дискета. Сервер. Текст: электронный. [б. ц.]. URL: http://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/67435. (ID=67435-1)
- 12. Сборник вопросов и заданий для подготовки к защите лабораторных работ по физике: Механика. Колебания и волны. Молекулярная физика и термодинамика. Электричество и магнетизм / Тверской гос. техн. ун-т, Каф. ТФ; сост.: А.В. Клингер, П.И. Дергунов. Тверь: ТвГТУ, 2009. 32 с.: ил. Текст: непосредственный. 9 р. 02 к. (ID=75506-90)
- 13. Сборник вопросов и заданий для подготовки к защите лабораторных работ по физике: Механика. Колебания и волны. Молекулярная физика и термодинамика. Электричество и магнетизм / Тверской гос. техн. ун-т, Каф. ТФ; сост.: А.В. Клингер, П.И. Дергунов. Тверь: ТвГТУ, 2009. Сервер. Текст: электронный. 0-00. URL: http://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/75376. (ID=75376-1)

7.4. Программное обеспечение по дисциплине

Операционная система Microsoft Windows: лицензии № ICM-176609 и № ICM-176613 (Azure Dev Tools for Teaching).

Microsoft Office 2007 Russian Academic: OPEN No Level: лицензия № 41902814.

WPS Office: MPL 1.1/GPL 2.0/LGPL 2.1.

LMS Moodle: GPL 3.0.

Виртуальная лаборатория физики 2.0: свидетельство №2003611438.

7.5. Специализированные базы данных, справочные системы, электронно-библиотечные системы, профессиональные порталы в Интернет

ЭБС и лицензионные ресурсы ТвГТУ размещены:

- 1. Ресурсы: https://lib.tstu.tver.ru/header/obr-res
- 2. ЭK T_BΓTY: https://elib.tstu.tver.ru/MegaPro/Web
- 3. ЭБС "Лань": https://e.lanbook.com/
- 4. ЭБС "Университетская библиотека онлайн": https://www.biblioclub.ru/
- 5. GEC «IPRBooks»: https://www.iprbookshop.ru/
- 6. Электронная образовательная платформа "Юрайт" (ЭБС «Юрайт»): https://urait.ru/
- 7. Научная электронная библиотека eLIBRARY: https://elibrary.ru/
- 8. Информационная система "ТЕХНОРМАТИВ". Конфигурация "МАКСИМУМ" : сетевая версия (годовое обновление) : [нормативно-технические, нормативно-правовые и руководящие документы (ГОСТы, РД, СНиПы и др.]. Диск 1, 2, 3, 4. М. :Технорматив, 2014. (Документация для профессионалов). CD. Текст : электронный. 119600 р. (105501-1)
- 9. База данных учебно-методических комплексов: https://lib.tstu.tver.ru/header/umk.html

УМК размещен: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/123202

8. Материально-техническое обеспечение дисциплины

При изучении дисциплины «Физика» используются современные средства обучения. Занятия проводятся в специально оборудованных аудиториях.

Лабораторные работы проводятся в 3 лабораториях кафедры общей физики: лаборатории механики и молекулярной физики, лаборатории электричества и магнетизма, лаборатории оптики, атомной и ядерной физики. Лаборатории кафедры оснащены всем необходимым оборудованием и приборами. Имеются в должном количестве лабораторные установки для выполнения работ, перечисленных в табл. 3а.

На кафедре общей физики имеется компьютерный класс с необходимым программным обеспечением, включая виртуальный лабораторный практикум по физике.

9. Оценочные средства для проведения промежуточной аттестации

9.1. Оценочные средства для проведения промежуточной аттестации в форме экзамена

1. Экзаменационный билет соответствует форме, утвержденной Положением о рабочих программах дисциплин, соответствующих федеральным государственным образовательным стандартам высшего образования с учетом профессиональных стандартов. Типовой образец экзаменационного билета приведен в Приложении. Обучающемуся даётся право выбора заданий из числа, содержащихся в билете, принимая во внимание оценку, на которую он претендует.

Число экзаменационных билетов -20. Число вопросов (заданий) в экзаменационном билете -3 (1 вопрос для категории «знать» и 2 вопроса для категории «уметь»).

Продолжительность экзамена – 60 минут.

- 2. Шкала оценивания промежуточной аттестации в форме экзамена «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- 3. Критерии оценки за экзамен: для категории «знать»: выше базового -2; базовый -1; ниже базового -0; критерии оценки и ее значение для категории «уметь»: отсутствие умения -0 балл; наличие умения -2 балла.

Критерии итоговой оценки за экзамен:

«отлично» - при сумме баллов 5 или 6;

«хорошо» - при сумме баллов 4;

«удовлетворительно» - при сумме баллов 3;

«неудовлетворительно» - при сумме баллов 0, 1 или 2.

- 4. Вид экзамена устный экзамен.
- 5. База заданий, предъявляемая обучающимся на экзамене.

1 курс 2 семестр

- 1. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона.
- 2. Напряженность электростатического поля. Теорема Остроградского-Гаусса.
- 3. Потенциал электростатического поля в вакууме. Принцип суперпозиции электростатических полей.
- 4. Поляризация диэлектриков. Проводники в электростатическом поле.
- 5. Электроёмкость. Конденсаторы. Энергия электрического поля.
- 6. Электрический ток. Сила тока. Плотность тока. Закон Ома.
- 7. Мощность электрического тока. Работа тока. Закон Джоуля-Ленца.
- 8. Источники магнитного поля. Вектор магнитной индукции. Вектор напряженности магнитного поля.
- 9. Закон Био-Савара-Лапласа.
- 10.Сила Ампера. Взаимодействие проводников с током.
- 11.Сила Лоренца. Движение заряженных частиц в магнитном поле.
- 12. Магнитное поле в веществе. Ферромагнетики.
- 13. Магнитный поток. Закон Фарадея для явления электромагнитной индукции.
- 14. Индуктивность. Явление самоиндукции. Энергия магнитного поля.

- 15. Электромагнитные колебания. Электромагнитные волны.
- 16.Система уравнений Максвелла.
- 17. Явление интерференции. Способы наблюдения интерференции света.
- 18. Явление дифракции. Принцип Гюйгенса-Френеля. Зоны Френеля.
- 19. Дифракция Френеля и Фраунгофера. Дифракционная решетка.
- 20. Дисперсия света. Поляризация света.

2 курс 3 семестр

- 1. Тепловое излучение. Законы Кирхгофа, Вина, Стефана-Больцмана.
- 2. Гипотеза и формула Планка.
- 3. Фотоэффект. Уравнение Эйнштейна. Фотоны.
- 4. Дуализм света. Давление света.
- 5. Эффект Комптона.
- 6. Спектр излучения атома водорода. Формула Бальмера.
- 7. Постулаты Бора.
- 8. Соотношение неопределенностей, волновая функция, ее статистический смысл и условия, которым она должна удовлетворять.
- 9. Уравнение Шредингера.
- 10. Квантовая частица в одномерной потенциальной яме.
- 11. Состав атомного ядра. Ядерные силы.
- 12. Энергия связи ядра.
- 13. Радиоактивность: альфа- и бета-распады.
- 14. Ядерные реакции и их энергетический эффект.
- 15. Деление ядер.
- 16.Синтез ядер.
- 17. Фундаментальные взаимодействия и основные классы элементарных частиц.
- 18. Частицы и античастицы.
- 19. Лептоны и адроны.
- 20.Кварки.

При промежуточной аттестации с выполнением заданий дополнительного итогового контрольного испытания студенту выдается билет с вопросами и задачами.

Пользование различными техническими устройствами за исключением инженерного калькулятора не допускается.

Преподаватель имеет право после проверки ответов на экзаменационные вопросы задавать студенту в устной форме уточняющие вопросы в рамках содержания экзаменационного билета, выданного студенту.

Иные нормы, регламентирующие процедуру проведения экзамена, представлены в Положении о текущем контроле успеваемости и промежуточной аттестации студентов.

9.2. Оценочные средства для проведения промежуточной аттестации в форме зачета

- 1. Шкала оценивания промежуточной аттестации «зачтено», «не зачтено».
 - 2. Вид промежуточной аттестации в форме зачета.

Промежуточная аттестация в форме зачета устанавливается преподавателем по результатам текущего контроля знаний и умений обучающегося без дополнительных контрольных испытаний.

При промежуточной аттестации без выполнения дополнительного итогового контрольного испытания студенту в обязательном порядке описываются критерии проставления зачёта:

«зачтено» - выставляется обучающемуся при условии выполнения им всех контрольных мероприятий, посещения лекций и практических занятий в объеме, соответствующем не менее чем 80% от количества часов, отведенного на контактную работу с преподавателем.

3. Для дополнительного итогового контрольного испытания студенту в обязательном порядке предоставляется:

база заданий, предназначенных для предъявления обучающемуся на дополнительном итоговом контрольном испытании (типовой образец задания приведен в Приложении);

методические материалы, определяющие процедуру проведения дополнительного итогового испытания и проставления зачёта.

Задание выполняется письменно.

Перечень вопросов дополнительного итогового контрольного испытания: $1\ \kappa ypc\ 1\ cemecmp$

- 1. Система отсчета, радиус-вектор, траектория, перемещение, путь, скорость, нормальное и тангенциальное ускорение.
- 2. Сила. Законы Ньютона.
- 3. Работа, кинетическая и потенциальная энергия, закон сохранения энергии.
- 4. Импульс, закон сохранения импульса; потенциальные кривые.
- 5. Угловая скорость, угловое ускорение; связь между угловыми и линейными характеристиками движения.
- 6. Основной закон динамики вращательного движения.
- 7. Момент импульса, кинетическая энергия вращательного движения.
- 8. Свободные незатухающие колебания. Амплитуда, фаза, частота и период колебаний.
- 9. Затухающие колебания. Логарифмический декремент затухания, добротность.
- 10.Вынужденные колебания.
- 11. Механические волны.
- 12.Идеальный газ. Параметры состояния. Уравнение состояния.
- 13. Основное уравнение молекулярно-кинетической теории.
- 14. Степени свободы и средняя кинетическая энергия молекул.
- 15. Эффективный диаметр и средняя длина свободного пробега.
- 16. Распределения Максвелла и Больцмана.
- 17. Первое начало термодинамики.
- 18. Второе начало термодинамики. Энтропия.
- 19. Кинетические явления: диффузия, теплопроводность, внутреннее трение.
- 20. Реальные газы.

Пользование различными техническими устройствами за исключением инженерного калькулятора не допускается. Преподаватель имеет право после проверки письменных ответов на вопросы контрольного испытания задавать студенту в устной форме уточняющие вопросы в рамках содержания задания, выданного студенту.

Иные нормы, регламентирующие процедуру проведения экзамена, представлены в Положении о текущем контроле успеваемости и промежуточной аттестации студентов.

Число заданий для дополнительного итогового контрольного испытания - 20.

Число вопросов -3 (2 вопроса для категории «знать» и 1 вопрос для категории «уметь»).

Продолжительность – 60 минут.

4. Критерии выполнения контрольного испытания и условия проставления зачёта: для категории «знать» (бинарный критерий): ниже базового - 0 балл; базовый уровень – 1 балла; критерии оценки и ее значение для категории «уметь» (бинарный критерий): отсутствие умения – 0 балл; наличие умения – 1 балла.

Критерии итоговой оценки за зачет:

«зачтено» - при сумме баллов 2 или 3;

«не зачтено» - при сумме баллов 0 или 1.

9.3. Оценочные средства для проведения промежуточной аттестации в форме курсовой работы или курсового проекта

Учебным планом курсовая работа (проект) по дисциплине не предусмотрены.

10. Методические рекомендации по организации изучения дисциплины

Студенты перед началом изучения дисциплины ознакомлены с системами кредитных единиц и балльно-рейтинговой оценки.

Студенты, изучающие дисциплину, обеспечиваются электронными изданиями или доступом к ним, учебно-методическим комплексом по дисциплине, включая методические указания к выполнению лабораторных, курсовых работ, всех видов самостоятельной работы.

В учебный процесс рекомендуется внедрение субъект-субъектной педагогической технологии, при которой в расписании каждого преподавателя определяется время консультаций студентов по закрепленному за ним модулю дисциплины.

11. Внесение изменений и дополнений в рабочую программу дисциплины

Протоколами заседаний кафедры ежегодно обновляется содержание рабочих программ дисциплин, по утвержденной «Положением о рабочих программах дисциплин» форме.

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет»

Направление подготовки 23.05.01 Наземные транспортно-технологические средства Направленность (профиль): *Технические средства природообустройства и защиты в чрезвычайных ситуациях*

Кафедра «Общая физика»

Дисциплина «Физика»

Семестр 1

ЗАДАНИЕ ДЛЯ ДОПОЛНИТЕЛЬНОГО ПРОМЕЖУТОЧНОГО КОНТРОЛЬНОГО ИСПЫТАНИЯ №1

Вопрос для проверки уровня «ЗНАТЬ» — 0 или 1 балл:

Система отсчета, радиус-вектор, траектория, перемещение, путь, скорость, нормальное и тангенциальное ускорение.

Вопрос для проверки уровня «ЗНАТЬ» — 0 или 1 балл:

Шарику, покоящемуся в вязкой жидкости, сообщили начальную скорость в горизонтальном направлении. Изобразите примерный вид траектории его движения, а также графиков зависимостей от времени горизонтальной и вертикальной составляющих его ускорения.

Задание для проверки уровня «УМЕТЬ» – 0 или 1 балл:

В результате изопроцесса идеальный газ переходит из одного состояния в другое. В приведенной ниже таблице для каждого варианта дается название газа, осуществляемый над ним изопроцесс, масса газа m, некоторые из параметров (абсолютная температура T, объем V, давление P) первоначального и конечного состояния газа. 1).Определить недостающие в таблице параметры начального и конечного состояний газа. 2). Для указанного в таблице процесса найти количество подведенной теплоты Q, изменение внутренней энергии газа ΔU , совершенную газом работу A.

газ	процесс	т, г	T_1,K	V_{l} , л	P_1 , $M\Pi a$	T_2 , K	V_2 , л	P_2 ,МП a
N_2	изобар.	56		1,2	5		1	

Критерии итоговой оценки за зачет:

«зачтено» - при сумме баллов 2 или 3; «не зачтено» - при сумме баллов 0, или 1.

Составитель: к.фм.н., доцент кафедры общей физики	П.И. Дергунов
Заведующий кафедрой: общей физики:	А.В. Твардовский

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет»

Направление подготовки 23.05.01 Наземные транспортно-технологические средства Направленность (профиль): *Технические средства природообустройства и защиты в чрезвычайных ситуациях*

Кафедра «Общая физика» Дисциплина «Физика» Семестр 2

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1

Вопрос для проверки уровня «ЗНАТЬ» — 0 или 1 или 2 балла:

Электрический заряд. Закон сохранения электрического заряда. Закон Кулона.

Задание для проверки уровня «УМЕТЬ» – 0 или 2 балла:

Точки M и N находятся на одинаковом расстоянии от проводника AB, по которому течет ток I_1 (см рисунок). Как изменится величина магнитной индукции в этих точках, если по проводнику CD пропустить ток I_2 в том же направлении, что и I_1 ?

$$\frac{A}{C} - \frac{M \cdot}{N \cdot} - \frac{B}{D} \longrightarrow I_1$$

Задание для проверки уровня «УМЕТЬ» — 0 или 2 балла:

Щель шириной 0.1 мм освещена монохроматическим светом с длиной волны 500 нм, падающим нормально, и рассматривается наблюдателем, находящимся за щелью. Что (максимум или минимум) видит глаз наблюдателя, если луч зрения образует с нормалью к поверхности щели: а) угол 17; б) угол 43?

Критерии итоговой оценки за экзамен:

«отлично» - при сумме баллов 5 или 6;
«хорошо» - при сумме баллов 4;
«удовлетворительно» - при сумме баллов 3;
«неудовлетворительно» - при сумме баллов 0, 1 или 2.

Составитель: к.ф.-м.н., доцент кафедры общей физики ______ П.И. Дергунов

Заведующий кафедрой: общей физики: ______ А.В. Твардовский

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет»

Направление подготовки 23.05.01 Наземные транспортно-технологические средства Направленность (профиль): *Технические средства природообустройства и защиты в чрезвычайных ситуациях* Кафедра «Общая физика» Дисциплина «Физика» Семестр 3

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1

Вопрос для проверки уровня «ЗНАТЬ» — 0 или 1 или 2 балла:

Тепловое излучение. Законы Кирхгофа, Вина, Стефана-Больцмана.

Задание для проверки уровня «УМЕТЬ» — 0 или 2 балла:

Число свободных электронов в полупроводниковом термосопротивлении при нормальной температуре равно 21013. Можно ли сказать, что чистый полупроводник содержит такое же число дырок?

Задание для проверки уровня «УМЕТЬ» — 0 или 2 балла:

Как и во сколько раз отличаются частоты фотонов, излучаемых атомом водорода при переходах с четвертого энергетического уровня на первый и с четвертого на второй?

Критерии итоговой оценки за экзамен:

Reprise in the order of the same of the sa	
«отлично» - при сумме баллов 5 или 6;	
«хорошо» - при сумме баллов 4;	
«удовлетворительно» - при сумме баллов 3; «неудовлетворительно» - при сумме баллов 0, 1 или 2.	
Составитель: к.фм.н., доцент кафедры общей физики	П.И. Дергунов
Заведующий кафедрой: общей физики:	А.В. Твардовский