Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет»

На правах рукописи

Меркурьев Сергей Алексеевич

Повышение эксплуатационной надежности непрерывных технологических процессов с использованием динамической экспертной системы

Научная специальность — 2.3.3 «Автоматизация и управление технологическими процессами и производствами (технические науки)»

Диссертация

на соискание учёной степени кандидата технических наук

Научный руководитель: доктор технических наук, профессор Палюх Борис Васильевич

Содержание

ВВЕДЕНИЕ5
ГЛАВА 1. АНАЛИЗ ПРОБЛЕМЫ ДИАГНОСТИКИ ЭКСПЛУАТАЦИОННОЙ
надежности непрерывных многостадийных технологических
ПРОЦЕССОВ
1.1. Анализ современных подходов к решению задачи безотказной работы
непрерывных многостадийных технологических процессов
1.2. Модели и методы технической диагностики непрерывных
многостадийных технологических процессов
1.2.1. Обзор традиционных диагностических моделей и методов
1.2.2. Параметрическая диагностика на основе теории интервального анализа 16
1.3. Анализ существующих систем поддержки принятия решений по
обнаружению и ликвидации дефектов и отказов непрерывных многостадийных
технологических процессов
1.4. Применение экспертных систем для повышения эксплуатационной
надежности технологических процессов
1.5. Задачи повышения эксплуатационной надежности на основе современных
методов искусственного интеллекта. Постановка задачи исследования
ГЛАВА 2. МЕТОДИКА ПОВЫШЕНИЯ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ
многостадийного непрерывного технологического
ПРОИЗВОДСТВА
2.1. Диагностика и оценка эксплуатационной надежности непрерывного
технологического процесса путем анализа случайного процесса изменения
технологических переменных во времени

2.2. Алгоритм обнаружения аномалий и определения момента бифуркации на
основе метода двойного скользящего окна
2.3. Алгоритм формирования гипотез о причинах предаварийных состояний с
помощью функций доверия
2.4. Формирование базы знаний экспертной системы и разработка системы
логического вывода
ГЛАВА 3 АРХИТЕКТУРА И ОПИСАНИЕ КОМПЛЕКСА ПРОГРАММНЫХ СРЕДСТВ ДИНАМИЧЕСКОЙ ЭКСПЕРТНОЙ СИСТЕМЫ
3.1. Программный модуль анализа текущего состояния технологического процесса на основе метода двойного скользящего окна
3.2. Программный модуль формирования гипотез о причинах предаварийных состояний с помощью функций доверия
3.3. Программный модуль логического вывода с использованием
3.3. Программный модуль логического вывода с использованием динамической экспертной системы
динамической экспертной системы

4.4. Оценка показателей надежности функционирования технологического
процесса с использованием предложенной методики
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ87
ПРИЛОЖЕНИЯ101
Приложение А. Акт об использовании результатов работы
Приложение Б. Деревья отказов
Дерево отказов в цепи подачи аммиака
Дерево отказов в цепи подачи воздуха115
Приложение В. Значения основных измеряемых технологических показателей
для трех цепей производства неконцентрированной азотной кислоты

ВВЕДЕНИЕ

В данной работе поднимается проблема диагностики непрерывных многостадийных производств. К ним можно отнести процессы химической промышленности, атомной энергетики, металлургии и т.д. Многие из этих процессов потенциально опасны. Одной из важных задач управления такими процессами является обеспечение их стабильности. Для этого производится непрерывный мониторинг состояния технологического процесса путем периодического измерения диагностических переменных и сравнения их с нормативными значениями. При нормальной работе оборудования технологический процесс функционирует в стационарном режиме, но со временем оборудование подвергается физическому и моральному износу. В ходе этого процесса постепенно технологический процесс переходит в нестационарный режим и становится неуправляемым. Время обнаружения аномального поведения технологического процесса существенно влияет на способность системы к восстановлению.

Проблема обнаружения аномалий в сложных динамических системах является развивающейся областью научных исследований и активно обсуждается в литературе. [1-10] В проведенных ранее исследованиях в области обнаружения и диагностики аномальных событий подчеркивается, что вопросы предупреждения об опасной ситуации являются очень актуальными. Традиционно обнаружение аномалий относится к проблеме выявление паттернов в данных, полученных основе мониторинга деятельности системы, соответствуют ожидаемому поведению. Эти несоответствующие паттерны часто называют аномалиями. Системы обнаружения аномалий во временных рядах самых разных приложениях. Проблема поиска используются в интерпретируется как проблема классификации. Для ее решения используются методы классификации, такие как метод к-ближайшего соседа, кластерный анализ, классификаторы, построенные с использованием искусственных нейронных сетей, метод случайного леса и тому подобное. Хотя существующие системы поиска аномалий во временных рядах доказали свою эффективность, существует ряд проблем, связанных с их практическим применением. Эти проблемы включают высокий уровень ложных срабатываний, ограниченные типы аномалий, которые система может обнаружить. Кроме того, такие системы не могут выполнять обнаружение в реальном времени. Наиболее существенным недостатком, с точки зрения определения бифуркаций в непрерывных многостадийных технологических процессах, является необходимость предварительного обучения рассмотренных систем поиска аномалий. Поскольку аварийные ситуации относятся к классу редких событий, формирование базы данных для обучения проблематично.

В настоящее время на непрерывных многостадийных производствах, зачастую, используются только самые базовые системы мониторинга технологического процесса путем периодического измерения диагностических переменных и сравнение их с нормативными значениями.

Цель и задачи работы

Цель работы заключается в повышении эксплуатационной надежности непрерывных многостадийных технологических процессов на примере неконцентрированной азотной кислоты.

Для реализации заявленной цели необходимо решить следующие задачи.

- Разработка и обоснование алгоритма детектирования дефектов в различных режимах технологического процесса.
- Выбор и обоснование процедуры вычисления начальных настроек алгоритма детектирования дефектов.

- Алгоритм формирования гипотез о причинах предаварийных состояний с помощью функций доверия.
- Разработка архитектуры динамической экспертной системы.
- Формирование методики повышения эксплуатационной надежности.
- Экспериментальная проверка разработанных алгоритмов и оценка показателей надежности функционирования технологического процесса с использованием динамической экспертной системы.

Объектом исследования является многостадийный технологический процесс производства неконцентрированной азотной кислоты.

Предмет исследования: измерение и вычисление технологических переменных, модели и методы определения точки бифуркации с помощью двойного скользящего окна, формирования гипотез о причинах предаварийных состояний с помощью функций доверия, принятие решений с помощью динамической экспертной системы.

Актуальность

В настоящее время большинство непрерывных многостадийных технологических процессов (ТП) могут представлять большую опасность. Связано это с тем, что дефект или отказ оборудования может привести как к незначительному инциденту, так и к крупной аварии с тяжелыми последствиями для предприятия, общества и природы. Для контроля состояния ТП используются различные традиционные методы. Из анализа публикаций можно сделать вывод, что по прежнему крайне низким остается уровень внедрения экспертных систем (особенно динамических) в процессы управления и анализа состояния ТП.

Научная новизна исследования заключается в создании и обосновании эксплуатационной методики повышения надежности функционирования непрерывных многостадийных технологических процессов с использованием динамической экспертной системы, в которой применяются разработанные и экспериментально обоснованные методы двойного скользящего окна ДЛЯ определения точки бифуркации, теории свидетельств для формирования гипотез о причинах предаварийных состояний и система логического вывода для принятия решений по диагностике непрерывных многостадийных производств.

Теоретическая значимость заключается в предложенной методике повышения эксплуатационной надежности многостадийных технологических процессов, которая объединяет в систему принятия решений три обоснованных алгоритма: метод двойного скользящего окна для определения точки бифуркации, теории свидетельств для формирования гипотез о причинах предаварийного состояния и экспертная система для выявления и уточнения дефекта.

Практическая ценность научных результатов диссертации состоит в том, что с использованием методов, предложенных в диссертационной работе, разработан программный комплекс. Результаты диссертации приняты к внедрению в акционерное общество – новомосковская акционерная компания "Азот".

Апробация работы

Основные результаты работы по повышению эксплуатационной надежности многостадийных технологических процессов с использованием динамической экспертной системы были представлены на конференциях:

- 1) VI Научный семинар «Золотовские чтения» 2024, 10.10-11.10.2024, г. Тверь.
- 2) V Всероссийской научно-практической конференции «Современные технологии и инновации» 2021, 23.03.2021, г. Тверь.

3) Proceedings of the 2021 IEEE conference of Russian young researchers in electrical and electronic engineering, elconrus 2021, 26.01-28.01.2021, г. Москва

Был получен акт об использовании результатов работы в АО НАК "Азот".

Публикация результатов

По материалам диссертации опубликовано 4 печатные работы: 2 статьи в рецензируемых журналах, включенных в список ВАК; 1 статья в журнале, индексируемом в международной реферативной базе Scopus и Web of Science; 1 статья в научном журнале из списка РИНЦ.

Структура и объем работы диссертации

Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы и приложения. Работа содержит 157 страниц основного текста, 25 таблиц, 15 рисунков. Список использованной литературы включает 106 наименования.

ГЛАВА 1. АНАЛИЗ ПРОБЛЕМЫ ДИАГНОСТИКИ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ НЕПРЕРЫВНЫХ МНОГОСТАДИЙНЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

В настоящее время большинство непрерывных многостадийных технологических процессов могут представлять большую опасность. Связано это с тем, что дефект или отказ оборудования может привести как к незначительному инциденту, так и к крупной аварии с тяжелыми последствиями для предприятия, общества и природы в частности. [11] Такие процессы требуют использования различных надежных методов диагностики текущего состояния технологического процесса и систем раннего предупреждения о возможности возникновения критических ситуаций.

1.1. Анализ современных подходов к решению задачи безотказной работы непрерывных многостадийных технологических процессов

В условиях роста сложности технологических процессов и увеличения требований к безопасности и экологичности производства, задача обеспечения безотказной работы становится одной из ключевых. Современные подходы к решению этой задачи включают как технологические, так и автоматизированные методы, направленные на повышение надежности и предотвращение аварийных ситуаций.

Решение задачи безотказной работы химических производств производится по трем направлениям:

1. Технологический путь

Разработка эффективных условий выполнения интенсивного технологического процесса и совершенствование технологического оборудования согласно регламентам по надежности эксплуатации промышленно-производственного

оборудования. Этот путь предполагает соблюдение стандартов, таких как ГОСТ Р 55062-2012, однако на практике эти требования часто не выполняются из-за высокой стоимости модернизации оборудования. [12] Современные решения включают использование новых материалов и конструкций, что позволяет повысить надежность и снизить вероятность отказов. [13, 14]

2. Автоматизированные системы диагностики (АСД)

Разработка и внедрение АСД, которые используют технологии ІоТ и машинного обучения для анализа больших объемов данных в реальном времени. Это позволяет повысить точность диагностики и снизить вероятность ложных срабатываний. [12] Например, на химическом заводе компании "ХимПром" внедрение АСД на основе ІоТ позволило снизить количество аварийных остановок на 30% за первый год эксплуатации.

3. Автоматизированные системы управления (АСУ) критическими режимами

Разработка АСУ, которые обеспечивают переход технологического процесса в область исправного состояния при возникновении предаварийных ситуаций. Такие системы интегрируются с SCADA-системами, что позволяет оперативно реагировать на изменения в технологическом процессе. [15] Если переход в исправное состояние невозможен, управление берет на себя автоматизированная система защиты (АСЗ), которая останавливает процесс и предупреждает персонал об аварийной ситуации. [16]

Проблемы и перспективы

Основными проблемами внедрения современных подходов являются высокая стоимость оборудования и сложность интеграции с существующими системами. В перспективе ожидается дальнейшее развитие интеллектуальных систем управления,

которые будут использовать искусственный интеллект для прогнозирования и предотвращения аварийных ситуаций. [17]

1.2. Модели и методы технической диагностики непрерывных многостадийных технологических процессов

Все задачи технической диагностики можно поделить на 2 группы:

- 1. Контроль и анализ объекта, а также выбор методов проверок с целью установления его действительного состояния.
- 2. Построение технических средств для осуществления проверок и разработка алгоритмов распознавания состояний и прогнозирования отказов с учетом данных о действительном состоянии объектов в процессе эксплуатации.

Контроль состояния объекта основывается на диагностической информации, к которой относятся значения технологических переменных, характеризующих функционирование производства; спектр вибрации элементов машин и аппаратов; спектр акустических колебаний; состояние реагирующих или соприкасающихся сред; данные дефектоскопии и т.д., а также диагностические показатели, рассчитываемые по моделям процесса. [18, 19]

1.2.1. Обзор традиционных диагностических моделей и методов

Под диагностическими моделями понимаются аналитические описания или графоаналитические представления основных свойств технологических или технических систем как объектов диагностирования. [18, 20] Кроме того, в последнее время получают распространение модели, основанные на знаниях [21], которые представляют собой декларативные или процедуральные описания объектов диагностирования. Выбор того или иного типа диагностической модели зависит от свойств объекта диагностики, условий эксплуатации и характера задач, решаемых

системой технической диагностики. Различают следующие задачи, стоящие перед системами технической диагностики [22] химических производств:

- Прогнозирование тенденции изменения процесса.
- Обнаружение зарождающейся неисправности.
- Прогнозирование неисправного состояния объекта.
- Определение причин неисправного состояния в режиме реального времени.
- Определение управляющих воздействий для вывода технологического процесса из неисправного состояния.
- Определение причин отказа после того, как он произошел.

Независимо от решаемой задачи и выбранного типа диагностической модели она должна предусматривать:

- 1. Формулировку условий работоспособности, то есть условий разделения множества возможных состояний объекта *Y* на три подмножества: исправных Yu, работоспособных *Yp* и неработоспособных *Yh* состояний;
- 2. Получение критерия для оценки степени работоспособности объекта диагностики (различие состояний в подмножестве *Yu*);
- 3. Установление признаков возникших неисправностей (различие состояний в подмножестве Yp).

Изменение работоспособности системы приводит к переходу системы из одного состояния в другое. Обычно считается [23], что исходным является исправное состояние и оно определено. Так, при использовании моделей, основанных на уравнениях материального, теплового или энергетического баланса, исходным является состояние удовлетворения условий равновесия. Метод построения диагностических моделей вытекает из анализа математических моделей технологических процессов химических производств. [24, 25]

Оператор *А* перехода из одного состояния в другое определяется коэффициентами преобразования, в качестве которых могут быть физические параметры (например, технологические переменные) элементов объекта. В зависимости от глубины имеющихся или используемых знаний о физической сущности процессов изменения работоспособности используются различные виды моделей: детерминированные, вероятностные или нечеткие. Особенностью моделей первого вида является единственность траектории, определяющей связь состояния работоспособности с характером неисправности. Во втором случае необходимо учитывать вероятностные свойства причинно-следственных связей в силу гипотетичного характера оператора преобразования. В третьем случае приходится оперировать понятием неопределенности при построении диагностической модели.

В общем случае состояние диагностируемой системы может быть описано n-мерным вектором $Y = [Y_1, Y_2, ..., Y_n]^T$

Оператор перевода системы из одного состояния в другое состояние характеризуется матрицей вида

$$A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$
 (1.1)

где a_{ij} $(i,j=\overline{1,n})$ – коэффициенты преобразования.

Диагностическая модель позволяет представлять любые процессы в форме линейных и нелинейных преобразований различной природы.

Так, если Y характеризует исходное состояние системы, то производное состояние Y' при линейном преобразовании вида

$$Y_i = \sum_{j=1}^n a_{ij}Y_j$$
, $i = \overline{1,n}$

может быть записано в виде

$$Y' = A Y$$
.

Для систем, описываемых дифференциальным уравнениями вида

$$\frac{dY_i}{dt} = \sum_{j=1}^{n} a_{ij}(t)Y_j + F_i(t), \ Y_i(0) = Y_i^0, i = \overline{1, n}$$

модель принимает форму

$$\frac{dY}{dt} = A(t) Y + F(t), Y(0) = Y^0$$

где

$$A(t) = [F_1(t), F_2(t), ..., F_n(t)]^T$$

И

$$Y^0 = [Y_1^0, Y_2^0, ..., Y_n^0]^T.$$

Такое представление является наиболее общим [23] и сохраняет свое содержание при прочих формах моделей. В вероятностных моделях оператор А является матрицей случайных чисел, а в нечетких - матрицей нечетких отношений.

Модели непрерывных объектов химической технологии в общем виде описываются системой неоднородных дифференциальных уравнений (1.1). Непрерывные объекты можно описывать также с помощью графов. [20, 26] Вершины графа отображают переменные величины У, а ветви соответствуют оператору перевода А. В ряде случаев в качестве диагностической модели может быть использована функциональная модель [18], но при этом остается необходимость решения задачи выявления условий работоспособности каждого функционального узла. [19]

1.2.2. Параметрическая диагностика на основе теории интервального анализа

Под параметрической диагностикой понимается [22] метод "обнаружения и диагностики неполадок с помощью оценок переменных состояний и параметров модели".

Общая схема параметрической диагностики может быть представлена [17, 23, 27] следующим образом. Технологический процесс P характеризуется измеряемыми входными и выходными переменными X и ненаблюдаемыми переменными и параметрами Z, которые могут быть вычислены по математической модели процесса F. Переменные X - это значения температур, давлений, расходов, выходных концентраций, уровней, скоростей вращения роторов и т.п.; переменные Z характеризуют такие показатели, как коэффициенты полезного действия, скорости химических реакций, степени превращения вещества, содержание отдельных веществ в промежуточных и целевых продуктах.

На основании результатов измерений определяются малые отклонения ΔX фактических значений от оптимальных с точки зрения эффективности и надежности ведения процесса, рассчитанных по математической модели F. [28] Отклонения ненаблюдаемых переменных ΔZ определяются по математической модели A процесса P. По полученным данным оператор D осуществляет диагностирование и прогнозирование отказов процесса.

Обычно [29] задача параметрической диагностики решается путем оперативного вычисления диагностических переменных через измеренные косвенных мгновенные значения технологических переменных, таких как температура, давление, расход и т.п. Однако в этом случае вычисленные параметры могут обладать очень большой погрешностью, поэтому система диагностики может часто выдавать сигналы ложной тревоги или пропускать дефекты. Это объясняется следующими факторами. Во-первых, мгновенные значения косвенных измеряемых переменных слишком чувствительны к шумовым помехам и могут случайным образом измениться на значительную величину. Во-вторых, измеряемые переменные относятся как ко входу, так и к выходу объекта диагностики и поэтому их значения будут отличаться на величину запаздывания динамического канала между входом и выходом.

Эти трудности можно преодолеть только лишь путем применения нетрадиционных математических методов. Два современных метода - теория нечетких множеств и интервальный анализ - позволяют ставить и решать принципиально новые задачи, решение которых традиционными затруднительно или невозможно. С использованием теории нечетких множеств онжом разработать диагностические модели В виде лингвистических математических моделей. Для этого предварительно требуется построение функций принадлежности. Для целей технической диагностики в связи с большим количеством ситуаций в условиях действующего химического производства было бы необходимо оперативно определять функции принадлежности. Эту операцию на действующем производстве проводить практически невозможно, так как при построении функций принадлежности значительное место отводится субъективизму исследователя и эксперта, поэтому наиболее перспективным является использование для этих целей знаний группы экспертов.

Интервальный анализ свободен от этих недостатков [30 - 32], так как оперирует с интервалами изменения диагностических показателей за заданный интервал времени.

Основная идея применения интервального анализа для целей технической диагностики проста. [33, 34] Диагностический показатель представляется в виде интервала Y.

$$Y = \left[\underline{Y}, \overline{Y}\right] = \{Y | \underline{Y} \le Y \le \overline{Y}; \ \underline{Y}, \overline{Y} \in R\}$$

где $\underline{Y}, \overline{Y}$ — нижняя и верхняя границы интервала Y; y — число из интервала Y; R — множество вещественных чисел.

Интервальным расширением функции диагностического показателя (y) со значениями в R называется интервальнозначная функция int, вида

$$int_{Y \in W} f(y) = [\min_{Y \in W} f(y), \max_{Y \in W} f(y)]$$

где W – ограниченная область в R.

Представляя малые отклонения технологических переменных ΔX и ΔZ в виде интервальных чисел, можно составить диагностическую модель в виде системы уравнений с интервальным коэффициентами и переменными. [30] Анализ полученных значений технологических переменных позволяет обнаруживать и прогнозировать дефекты объекта диагностики. [19]

1.3. Анализ существующих систем поддержки принятия решений по обнаружению и ликвидации дефектов и отказов непрерывных многостадийных технологических процессов

Системы поддержки принятия решений (СППР) — это компьютерные информационные системы, разработанные таким образом, чтобы помочь менеджерам выбрать одно из множества альтернативных решений проблемы. [35 - 37]

СППР — это интерактивная компьютерная информационная система с организованным набором моделей, процедур, программного обеспечения, баз данных, телекоммуникаций и устройств, которая помогает лицам, принимающим решения, решать неструктурированные или полу структурированные бизнеспроблем. [38]

Система поддержки принятия решений обладает следующими основными характеристиками [39]:

- Обработка больших объемов данных.
- Получение и обработка данных из различных источников, включая внутренние и внешние данные, хранящиеся в системах и сетях мэйнфреймов.
- Обеспечение гибкости отчетов и презентаций в соответствии с потребностями лица, принимающего решения.
- Поддерживайте управленческие суждения, а не заменяйте их.
- Выполняйте сложный анализ и сравнение с помощью передовых программных пакетов.
- Повышение эффективность принимаемых решений.
- Наличие прогностических инструментов.

Современные виды систем поддержки принятия решений наделены следующими возможностями [40]:

- Поддержка этапов решения проблем, включая анализ, проектирование, выбор, внедрение и мониторинг.
- Поддержка различных частот принятия решений, от единичных до повторяющихся.
- Поддержка различных типов проблем, от высокоструктурированных до неструктурированных.
- Поддержка различных уровней принятия решений, включая решения оперативного, тактического, стратегического уровня.

Использование систем поддержки принятия решений на предприятиях с одной стороны имеет много преимуществ, а с другой стороны имеет несколько недостатков, которые заключаются в следующем:

Преимущества:

- Повышает организационный контроль за счет постоянного предоставления менеджерам информации, которая может быть использована для оценки производительности сотрудников.
- Повышает эффективность и скорость принятия решений.
- Помогает автоматизировать управленческие процессы.
- Способствует обучению внутри организации, поскольку для внедрения и запуска СППР в организации необходимо развивать определенные навыки. [41]
- Повышает способность организации к прогнозированию и, следовательно, способность принимать решения на будущее.
- Улучшает межличностную коммуникацию внутри организации. Недостатки:
- Стоимость разработки и внедрения СППР требует огромных капиталовложений, что делает ее менее доступной для небольших организаций. [35]
- Менеджеры могут слишком полагаться на систему, что устраняет субъективный аспект принятия решений.
- В некоторых случаях пользователи могут получить избыточную информацию о проблеме, что может снизить эффективность принятого решения.
- В случае принятия неправленых решений, пользователи могут переложить ответственность на СППР. [40]

В связи с постоянно увеличивающимся объемом информации, которая циркулирует и используется людьми в различных сферах жизнедеятельности, возрастает роль автоматизированных систем поддержки принятия решений (СППР). При этом в настоящее время нет общепризнанной классификации СППР, как и не существует универсальной системы, способной решить любую задачу. Хотя сегодня разработаны и обоснованы многие эффективные инструменты для поддержки

принятия управленческих решений, остаётся открытым вопрос об их использовании на местах лицами, принимающими решения (ЛПР). Чаще всего решения принимаются без использования СППР, основываясь лишь на опыте ЛПР и его интуиции. [42]

1.4. Применение экспертных систем для повышения эксплуатационной надежности технологических процессов

Экспертные системы (ЭС) — это компьютерные программы, предназначенные для решения сложных задач в определенной предметной области, используя знания и логику, аналогичные тем, которые применяют эксперты-люди. Они состоят из базы знаний (набор правил и фактов) и механизма логического вывода, который позволяет системе делать выводы на основе входных данных. [43 - 46]

Экспертные системы бывают статические и динамические. [47, 48]

Статические экспертные системы — это системы, которые работают с неизменяемой базой знаний и не учитывают изменения во времени. Они применяются для решения задач, где входные данные и условия остаются постоянными в течение всего процесса принятия решений.

Характеристики статических ЭС:

- Неизменяемая база знаний: Правила и факты зафиксированы и не обновляются в процессе работы.
- Детерминированность: Решения принимаются на основе четких правил и логики.
- Применение: Диагностика, классификация, интерпретация данных.

Преимущества:

- Простота разработки и внедрения.
- Высокая точность в узких предметных областях.

Недостатки:

- Неспособность адаптироваться к изменяющимся условиям.
- Ограниченность в решении задач, требующих учета динамических факторов.

Динамические экспертные системы — это системы, которые способны учитывать изменения во времени и адаптироваться к новым условиям. Они используются для решения задач, где входные данные и условия могут меняться в процессе работы.

Характеристики динамических ЭС:

- Адаптивная база знаний: Правила и факты могут обновляться в реальном времени.
- Учет временных факторов: Возможность анализа данных, изменяющихся во времени.
- Применение: Управление технологическими процессами, прогнозирование, мониторинг.

Преимущества:

- Гибкость и адаптивность.
- Возможность работы с изменяющимися данными и условиями.

Недостатки:

- Сложность разработки и настройки.
- Высокие требования к вычислительным ресурсам.

От других систем искусственного интеллекта (СИИ) и систем обработки данных ЭС отличаются совокупностью специфических характерных черт:

• Высокоуровневые правила работы и отсутствие слепого поиска.

- Рассуждения на основе символьных вычислений.
- Проблемно-ориентированные стратегии решения.
- Использование фундаментальных принципов из предметной области.
- Сложность решаемой задачи.
- Преобразование описаний на естественном или специальном языке в форму, пригодную для применения правил.
- Способность рассуждения о собственной работе, в частности с целью объяснения.
- Определение характеристик ЭС типом решаемой задачи.
- Плавное снижение качества работы при подходе к границам предметной области.

Практически все действующие ЭС каким-либо образом обслуживают неопределенность, как одну из составляющих сложности задачи. [49-52]

С возрастанием сложности химических производств растет трудность выявления причин их неудовлетворительной работы или возможных неисправностей. Это создает серьезные предпосылки для использования ЭС в системах диагностики неисправностей и отказов. Кроме того имеется ряд субъективных причин.

Так, соблюдая один из законов прикладной мерфологии о том, что "система обеспечения надежности выведет из строя другие системы, сохранив свою работоспособность", конструкторы аварийных систем стараются делать их максимально простыми, чтобы повысить их надежность. В результате аварийные системы очень часто оказываются не в состоянии различить действительно аварийные ситуации и обстоятельства, которые не требуют остановки производства. [53] Однако с Такой задачей вполне справляется управляющий технологическим процессом оператор, но в то же время его работоспособность зависит от рабочей смены, текучести кадров, отпусков и т.п. Операторы могут быть хорошо

подготовлены к стандартным ситуациям, но не готовы справиться с непредвиденными случаями. Стресс, вызванный тревожной ситуацией, может добавить трудности при принятии решения.

Использование элементов ЭС в системах управления эксплуатационной надежностью химических производств обеспечивает оператора квалифицированной помощью и поддержкой при принятии решений независимо от уровня его подготовленности [54, 55]. На практике могут быть определены два режима работы диагностической ЭС [56]:

- 1. Система направляется оператором таким образом, чтобы сосредоточиться на конкретных аномальных событиях.
- 2. Система непрерывно следит за состоянием производства и дает советы оператору, когда для этого есть основания. Для решения этих вопросов в ЭС используются специальные методы и приемы. [51-54, 56-62]

Структуру диагностической ЭС обычно рассматривают как состоящую из базы данных (БД), базы знаний (БЗ) [63] и некоторой управляющей системы. [57] БД представляет собой набор текущих состояний диагностируемой системы и наблюдаемые факты (симптомы и признаки). БЗ содержит правила принятия решений, объединяющие основные фундаментальные знания в данной предметной области и эвристики, полученные в результате деятельности специалистов: проектировщиков, эксплуатационников и ремонтников. Кроме того, Б3 включает в себя понятия классов и отношений в рассматриваемой области. На сегодняшний день можно выделить три типа представления знаний в ЭС, получивших приложениях: продукционное, фреймовое распространение реальных семантические сети. Иногда используется комбинированное представление знаний, например, продукционно-фреймовое. [21] Для широкого класса диагностических

задач характерно построение БЗ, основанное на системе продукций. В общем виде продукционные правила диагностической ЭС имеют вид:

ЕСЛИ: (1-ое состояние системы) И (наблюдаемый факт)

ТО: (1-ое состояние системы).

Управляющая система предполагает наличие некоторого алгоритма, обеспечивающего оптимальный по полноте и быстродействию поиск целевого решения, то есть нахождение причины (или причин) наблюдаемого отказа или своевременное предупреждение о возникновении предаварийного состояния (в зависимости от режима работы ЭС). Структура знаний ЭС в большой степени определяет управляющий алгоритм.

Имеется два основных подхода к автоматизированному диагнозу дефектов. [22, 58] Первый - опытно-ориентированный метод, который может основываться на обработке списков, распознавании образов и т. д. Второй - логико-ориентированный метод, использующий модель диагностируемой системы, которая состоит из обратного оператора причинно-следственных отношений.

При построении диагностических ЭС большое распространение получило представление поведения химической технологической системы (ХТС) в случае неисправности в виде дерева отказов и причинно-следственной схемы. [59] Если поведение диагностируемой системы удается представить в виде простого дерева S элементами которого состояния (неисправности, отказов, являются промежуточные, предаварийные и аварийные состояния) и факты F (наблюдаемые признаки-симптомы), то оно программируется в виде несложных продукционных правил. При диагностировании происходит просмотр этого дерева и формирование множеств истинных и ложных фактов и состояний на основе базы данных и ответов оператора. [60]

В качестве общей модели технической диагностики как процесса часто используется [61] структура вида $S = \langle N, M \rangle$, где $N = \{N_i\}$, $i = \overline{1,n}$ - множество узлов, соответствующих симптомам, а M - множество мульти дуг, отражающих возможные пути ветвления процесса. Мульти дуга определяется как пара (N_i, X_t) , где $X \in N$, а $t = t_1, t_2, \ldots, t_p$, то есть мульти дуга соединяет данный узел N_i с одним узлом или их множеством. Такое представление преобразует структуру S в граф, а использование мульти дуг как понятия обеспечивает удобство представления.

Каждой мульти дуге присваивается коэффициент защиты P_{ik} , представляющий собой сложную меру, основывающуюся на вероятности существования экспертно-определенного множества симптомов.

Все возможные проходимые пути в структуре S определяются переключающими функциями F_{ik} . Множество дефектов представляет собой множество $N_t \in N$, состоящее из терминальных узлов, то есть узлов, не соединенных с последующим узлами. В начале процедуры диагностирования пользователем определяется множество начальных симптомов $N_f \in N$. Это дает возножность начать диагностирование на различных уровнях поиска неисправностей, что существенно упрощает использование ЭС пользователями с различной квалификацией.

Таким образом, задача нахождения одиночной неисправности сводится к определению некоторого дерева, содержащего проходимые дуги, корнем которого является терминальный узел дефектов, а листьями - множество начальных симптомов N_f . [60, 61]

Другим способом представления поведения диагностируемой XTC, учитывающим структуру распространения повреждения, является сигнальный направленный граф. [62]

Поиск верного диагноза может направляться как целью, так и данными, может проходить по принципу "сначала в глубину" или "сначала в ширину" или по принципу "первый лучший". [53] Очень часто оказывается целесообразным использование комбинаций различных методов. При этом преследуется одна очень важная цель - сужение пространства поиска. [63] Простой перебор информации, имеющейся в базах знаний и данных может быть использован только при малых пространствах поиска, надежности знаний и данных, что практически не встречается в реальных эс. Для преодоления этих трудностей при построении ЭС используют различные специальные приемы сокращения пространства поиска.

Слепой поиск [51, 52] - направляется целью или данными или носит двунаправленный характер.

Эвристический поиск [51] - направляется одиночной функцией, которая может формироваться как в алгебраическом, таки в символьном виде.

Иерархический поиск [63] - обеспечивается различными уровнями абстрагирования. Использование этого метода тесно связано с решением задачи функциональной декомпозиции. [64]

Метод порождения и проверки [51] - позволяет отсекать неперспективные решения, например те, в которых используется не вся информация.

В зависимости от конкретного вида предметной области и формы представления знаний о ней, а также типа задач, решаемых ЭС, существует еще целый ряд частных приемов, упрощающих процесс поиска. [52, 57]

Обычно ключевую роль в реальных приложениях ЭС в диагностике неисправностей играют эмпирические знания и эвристики. В отличие от других диагностических ЭС для ЭС технической диагностики химических производств

чисто эмпирический подход не является оптимальным, что обусловлено рядом причин:

- Труднодоступность квалифицированных экспертов, в том числе из-за напряженного режима работы специалистов-эксплуатационников на современных химических предприятиях.
- Многие неполадки сопровождаются нестандартными ситуациями, не обеспеченными предыдущим опытом.
- Для новых, реконструированных или переоборудованных предприятий может не быть подходящих экспериментальных знаний.
- Знания в области химической технологии достаточно сильно формализованы и структурированы.

Именно последнее обстоятельство позволяет использовать в ЭС технической диагностики химических предприятий результаты математического моделирования процессов кинетики, термо и гидродинамики, массопередачи и т.д. Существует подход к созданию ЭС технической диагностики, включающий в себя помимо экстракции эмпирических знаний еще и использование в значительной мере фундаментальных знаний, в частности, информации, обеспеченной причинноследственными исследованиями и математическими моделями. Такого рода ЭС часто называют гибридными ЭС, понимая под этим термином слияние в одной структуре интеллектуальных средств и традиционного программного обеспечения. При этом существенным вопросом является перевод методов диагностики, основанных на причинно-следственных связях и математических моделях, в формат правил для интеграции их в БЗ ЭС. [19, 65, 66]

1.5. Задачи повышения эксплуатационной надежности на основе современных методов искусственного интеллекта. Постановка задачи исследования

Проведенный обзор позволил выявить ключевые недостатки современных диагностических систем, которые ограничивают их эффективность в управлении эксплуатационной надежностью многостадийных технологических процессов. Несмотря на значительные достижения в области автоматизации и контроля, остаются нерешенными ряд важных задач, связанных с переходом процессов в нестационарные режимы, оперативным принятием решений и построением интеллектуальных систем управления. Эти проблемы требуют разработки новых подходов, основанных на современных методах искусственного интеллекта и адаптивных технологиях. [67]

Недостатки современных подходов повышения эксплуатационной надежности технологического процесса:

1. Отсутствие методов определения перехода случайных процессов изменения технологических переменных в нестационарные режимы при диагностике стационарных режимов работы технологического процесса.

Современные системы часто не способны своевременно идентифицировать переходы между стационарными и нестационарными режимами, что приводит к запаздыванию в диагностике и увеличению риска аварийных ситуаций. Это требует разработки новых алгоритмов, способных анализировать динамику процессов в реальном времени и выявлять признаки не стационарности на ранних этапах.

2. Отсутствие современного подхода, основанного на методах искусственного интеллекта по принятию оперативных решений с целью управления эксплуатационной надежностью.

Традиционные методы управления часто не учитывают сложность и взаимосвязь стадий технологических процессов.

3. Отсутствуют решения по построению архитектуры специализированной динамической экспертной системы повышения эксплуатационной надежности непрерывных многостадийных технологических процессов.

Постановка задачи исследования

Существующие системы часто имеют жесткую архитектуру, которая не позволяет адаптироваться к изменениям в технологических процессах. Разработка динамической экспертной системы, способной адаптироваться в реальном времени, является важным шагом на пути к повышению надежности и эффективности производственных процессов.

Для решения выявленных недостатков были поставлены следующие задачи:

- 1. Разработка и обоснование алгоритма детектирования точки бифуркации в различных режимах технологического процесса.
- 2. Выбор и обоснование процедуры вычисления начальных настроек алгоритма детектирования дефектов.
- 3. Алгоритм формирования гипотез о причинах предаварийных состояний с помощью функций доверия.
- 4. Разработка архитектуры динамической экспертной системы.
- 5. Формирование методики повышения эксплуатационной надежности.
- 6. Экспериментальная проверка разработанных алгоритмов и оценка показателей надежности функционирования технологического процесса.

ГЛАВА 2. МЕТОДИКА ПОВЫШЕНИЯ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ МНОГОСТАДИЙНОГО НЕПРЕРЫВНОГО ТЕХНОЛОГИЧЕСКОГО ПРОИЗВОДСТВА

2.1. Диагностика и оценка эксплуатационной надежности непрерывного технологического процесса путем анализа случайного процесса изменения технологических переменных во времени

К наиболее опасным относятся химико-технологические процессы, большой $\lceil 11 \rceil$ реализованные агрегатах мощности. Такие процессы характеризуются высокой интенсивностью, сложностью управления повышенными рисками возникновения аварийных ситуаций, привести к значительным экономическим и экологическим последствиям. Поэтому в данной работе будет рассматриваться химическое производство на примере производства неконцентрированной азотной кислоты (НАК) под единым давлением 0.716 МПа в агрегатах типа УКЛ-7, которое является сложным крупнотоннажным производством, с производительностью 120 тыс. тонн неконцентрированной азотной кислоты в год. [68]

Производство НАК включает несколько ключевых стадий, таких как окисление аммиака, абсорбция оксидов азота и очистка конечного продукта. [69] Каждая из этих стадий требует точного контроля параметров (температуры, давления, концентрации реагентов) для обеспечения стабильности процесса и минимизации рисков. [70] Агрегаты типа УКЛ-7, используемые в данном производстве, представляют собой сложные технологические комплексы, которые объединяют множество аппаратов (реакторы, теплообменники, абсорберы) и систем автоматизации. [71]

Представлена схема основных материальных потоков агрегатов УКЛ-7 с селективной низкотемпературной очисткой хвостовых газов. (Рисунок 2.1)

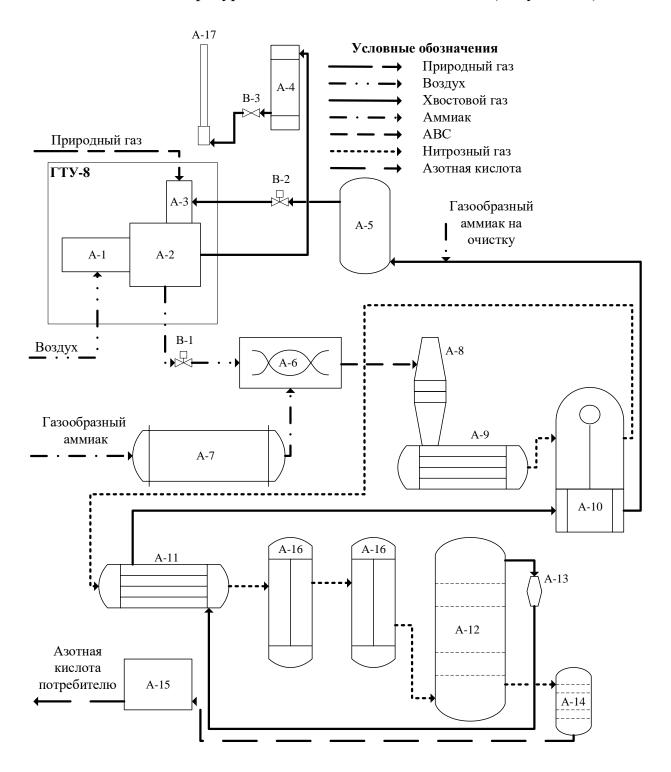


Рисунок 2.1 - Схема основных материальных потоков агрегатов УКЛ-7 с селективной низкотемпературной очисткой хвостовых газов

Данная схема описывает технологический процесс производства неконцентрированной азотной кислоты (HNO₃) из аммиака (NH₃) и воздуха. Процесс включает несколько стадий: подготовку сырья, окисление аммиака, абсорбцию нитрозных газов и получение неконцентрированной азотной кислоты.

Основные этапы и аппараты:

- 1. Подготовка воздуха.
 - а. A-1 Компрессор ГТУ-8.
 - b. A-2 Турбина ГТУ-8.
 - с. А-3 Камера сгорания турбины ГТУ-8 Сжигание природного газа для получения тепловой энергии.
 - d. A-4 Экономайзер подогрев воды для нужд технологического процесса.
- 2. Очистка хвостовых газов и подготовка аммиака.
 - а. A-5 Реактор селективной очистки очистка хвостовых газов с использованием катализатора сотовой структуры.
 - b. A-6 Смеситель Аммиачно-воздушной смеси (ABC).
 - с. А-7 Комбинированный аппарат подготовки газообразного аммиака
 Дополнительная подготовка аммиака перед подачей в контактный аппарат.
- 3. Окисление аммиака.
 - а. A-8 Контактный аппарат окисление аммиачно-воздушной смеси на платиновом катализаторе с образованием нитрозных газов (NO, NO₂).
 - b. A-9 Котел-утилизатор КУН утилизация тепла, выделяющегося при окислении аммиака.
- 4. Обработка нитрозных газов.

- а. А-10 Совмещенный аппарат окислитель с фильтром платины и подогревателем хвостовых газов Окисление NO до NO₂ и подогрев хвостовых газов.
- b. A-11 Подогреватель хвостовых газов Подготовка газов для дальнейшей обработки.
- 5. Абсорбция и получение неконцентрированной азотной кислоты.
 - а. А-12 Абсорбционная колонна поглощение нитрозных газов водой с образованием неконцентрированной азотной кислоты.
 - b. A-13 Центробежный сепаратор.
 - с. А-14 Продувочная колонна удаление примесей из кислоты.
- 6. Охлаждение и хранение.
 - а. А-15 Склад неконцентрированной азотной кислоты.
 - b. A-16 Холодильник-конденсатор.
- 7. Выбросы.
 - а. А-17 Общая выхлопная труба вывод хвостовых газов в атмосферу.

В данном многостадийном технологическом производстве можно выделить следующие основные газовые и гидравлические связи (цепи):

- Цепь подачи воздуха на технологию.
- Цепь подачи аммиака в смеситель.
- Цепь движения нитрозных газов.
- Цепь движения хвостовых газов.

В ходе исследования существующих работ по выбранной тематике [19, 23, 68, 72] была определена структура процесса производства НАК, определены как некоторые основные измеряемые технологические переменные (таблица 2.1), так и вычисляемые диагностические показатели производства неконцентрированной азотной кислоты (Таблица 2.2). Кроме этого были определены нормативные

значения вычисляемых диагностических показателей. (Таблица 2.3). Выход значений измеряемых и вычисляемых диагностических показателей за границы эти границы является признаком отказа. Далее эти данные (нормативные показатели) будут использоваться при построении модели производства НАК и проверки ее на адекватность.

Таблица 2.1 - Некоторые основные измеряемые технологические переменные агрегата типа УКЛ-7 и их нормативные значения для осуществления диагностики эксплуатационной надежности

No	Описание	Ед. Измерения	Нижняя граница	Верхняя граница	Аппарат
<i>Z</i> 1	Концентрация продукционной кислоты	%	55.3	55.5	A-12
<i>Z</i> 2	Расход продукционной кислоты	М3/ч	16.24	16.44	A-12
Z3	Расход газообразного аммиака для аммиачно-воздушной смеси (ABC)	М3/ч	5200	5300	A-7
<i>Z</i> 4	Расход воздуха для АВС	М3/ч	48000	49000	A-2
<i>Z</i> 5	Температура нитрозного газа под сетками контактного аппарата	°C	898	902	A-8
<i>Z</i> 6	Температура нитрозных газов под первой тарелкой абсорбционной колонны	°C	65	67	A-12
<i>Z</i> 7	Атмосферное давление	Мм.рт.ст.	751	753	A-1
Z8	Давление насыщенных паров воды при заданной температуре наружного воздуха	МПа	0.002	0.0021	A-1
<i>Z</i> 9	Влажность атмосферного воздуха	01	0.74	0.76	A-1

No	Описание	Ед. Измерения	Нижняя граница	Верхняя граница	Аппарат
Z10	Разряжение на всасывании воздушного компрессора	Мм.в.ст.	289	300	A-1
<i>Z</i> 11	Давление на нагнетании воздушного компрессора	Кг/см ²	3.36	3.40	A-1
Z12	Температура на всасывании воздушного компрессора	⁰ C	19	20	A-1
Z13	Температура на нагнетании воздушного компрессора	⁰ C	178	180	A-1
Z14	Давление на всасывании нитрозного нагнетателя	Кг/см ²	2.86	2.90	A-9
Z15	Давление на нагнетании нитрозного нагнетателя	Кг/см ²	10.9	11.1	A-9
Z16	Температура на всасывании нитрозного нагнетателя	⁰ C	60	63	A-9
<i>Z</i> 17	Температура на нагнетании нитрозного нагнетателя	⁰ C	220	225	A-9
Z18	Давление газов на входе в газовую турбину	Кг/см ²	9.1	9.2	A-2
Z19	Давление газов на выходе из газовой турбины	Кг/см ²	0.05	0.055	A-2
Z20	Температура газов на входе в газовую турбину	⁰ C	755	758	A-2
Z21	Температура газов на выходе из газовой турбины	⁰ C	380	385	A-2
Z22	Давление пара на входе в паровую турбину	Кг/см ²	38.1	38.7	A-9
Z23	Давление пара на выходе из паровой турбины	Кг/см ²	15.9	16.1	A-9
Z24	Температура пара на входе в	⁰ C	435	440	A-9

No	Описание	Ед.	Нижняя	Верхняя	Аппарат
		Измерения	граница	граница	
	паровую турбину				
Z25	Температура пара на выходе из паровой турбины	⁰ C	345	350	A-9

Таблица 2.2 - Вычисляемые диагностические параметры производства НАК

№	Описание	Ед. изм.	Уравнение
<i>X</i> 1	Степень конверсии	Доли ед.	$X_1 = \frac{355.56 \times 0.0152 \times Z_1 \times Z_2}{Z_3 \times X_2}$ $X_1 = 0.97 + 0.0046 \times X_5 - 0.036 \times X_5^2$
<i>X</i> 2	Степень абсорбции	Доли ед.	$X_2 = \frac{355.56 \times 0.0152 \times Z_1 \times Z_2}{Z_3 \times X_1}$
<i>X</i> 3	Содержание аммиака в ABC	Доли ед.	$X_3 = \frac{1}{(Z_4/Z_3) + 1}$
<i>X</i> 4	Температура ABC	К	$X_4 = \frac{Z_5 \times 0.8533 \times 10^{-3} - X_3 - 0.2275}{0.8533 \times 10^{-3}}$
X5	Давление в контактном аппарате	МПа	$X_5 = \frac{Z_5 - 782}{177}$
X6	Количество кислорода, расходуемого на реакции для получения одной тонны 100%-ой азотной кислоты	M ³ /T	$X_6 = 266.67 + \frac{355.56}{X_2} \times (0.5 + \frac{0.75}{X_1})$

No॒	Описание	Ед. изм.	Уравнение
X7	Константа скорости окисления аммиака до оксида азота	Безраз мерная величи на	$X_7 = (9 \times 10^5 \times e^{-1.25 \times 10^{-4} \times X_5^2} - 3.43 \times 10^2 \times X_5 + 7.8 \times 10^5) \times e^{\frac{4026}{Z_5}}$
X8	Константа скорости окисления NO	Безраз мерная величи на	$lgX_8 = 21.98 - 0.1047 \times Z_1 - 0.464 \times Z_6$
X9	Содержание кислорода в хвостовом газе, выходящим из абсорбционно й колонны	M ³ / _T	$X_9 = \frac{355.56 \times (X_{11} \times X_{14} + X_{12})}{X_1 \times X_2 \times (\frac{1}{X_{10}} - 1 - X_{14})}$
X10	Концентрация кислорода в хвостовом газе	Доли ед.	$X_{10} = \frac{355.56 \times (X_{11} \times X_{14} + X_{12})}{X_1 \times X_2 \times (\frac{1}{X_{10}} - 1 - X_{14})}$
X11	Удельный расход кислорода на химические реакции	M ³ /м ³	$X_{11} = \frac{X_1 \times X_2 \times X_6}{355.56}$
X12	Сумма относительны х объемов азота в контактном аппарате и оксидов азота в хвостовых газах	Безраз мерная величи на	$X_{12} = 0.5 - (X_2 - 0.5) \times X_1$

№	Описание	Ед. изм.	Уравнение
X13	Расходный коэффициент по добавочному кислороду	M ³ /м ³	$X_{13} = \frac{X_{11} \times \left(1 - X_{10} \times \left(1 - \frac{X_{12}}{X_{11}}\right)\right) \times \left(1 - \frac{X_{14}}{3.762}\right)}{1 - \frac{X_{10}}{1 + X_{14}}}$
X14	Соотношение азота и кислорода в воздухе, применяемом в производстве	1	$X_{14} = \frac{3.762 \times (X_{11} - X_{13} + \frac{X_{12}}{\frac{1}{X_{10}} - 1})}{X_{11} - \frac{3.762 \times X_{13}}{\frac{1}{X_{10}} - 1} + \frac{X_{12}}{\frac{1}{X_{10}} - 1}}$
X15	Содержание кислорода в атмосферном воздухе на 1 тонну готового продукта	M ³ / _T	$X_{15} = X_6 + X_9$
<i>X</i> 16	Содержание азота в атмосферном воздухе	M ³ / _T	$X_{16} = X_{14} \times X_{15}$
<i>X</i> 17	Содержание паров воды в атмосферном воздухе	M ³ / _T	$X_{17} = \frac{X_{15} + X_{16}}{\frac{133.322 \times 10^{-6} \times Z_7}{Z_8 \times Z_9} - 1}$
X18	Содержание NO в хвостовом газе	M ³ / _T	$X_{18} = 355.56 \times (\frac{1}{X_2} - 1)$

№	Описание	Ед. изм.	Уравнение
<i>X</i> 19	Количество хвостовых газов на 1 тонну продукции	M ³ /T	$X_{19} = \frac{355.56}{X_1 \times X_2} \times (X_{11} \times X_{14} + X_{12}) + X_9 \times (1 + X_{14})$
X20	Содержание паров воды в хвостовом газе	M ³ / _T	$X_{20} = (0.011, 0.0012) \times X_{19}$
X21	Количество паров воды, сконденсиров авшихся в системе	M ³ /T	$X_{21} = 0.80357 \times (X_{17} + 355.56)$ $\times \left(1 + \frac{1.5}{X_2} \times \left((1 - X_2) + \frac{1}{X_1} - 1\right)\right)$ $-X_{20}$
X22	Количество воды, требующейся для орошения абсорбера	M ³ / _T	$X_{22} = 1000 \times \left(\frac{100}{Z_1} - 1\right) - X_{21}$
X23	Количество добавочного воздуха	M ³ / _T	X_{23} = 355.56 × $\frac{1 + X_{14}}{X_1 \times X_2}$ × $(\frac{X_{10} \times (X_1 \times (X_2 \times (0.75 \times X_{14} - 1) + 0.5 * (X_{14} + 1) + 0.75 \times X_{14} \times (X_{14} \times $
X24	КПД воздушного компрессора	Доли ед.	$= \frac{Z_{13} + Z_{12}}{Z_{13} - Z_{12}} \times \left(\left(\frac{Z_{11}}{1.3595 \times 10^{-3} \times Z_7 - Z_{10} \times 10^{-4}} \right)^{0.33} - 1 \right)$

No	Описание	Ед. изм.	Уравнение
X25	КПД нитрозного нагнетателя	Доли ед.	$X_{25} = 0.25 \times \frac{ln\frac{Z_{15}}{Z_{14}}}{ln\frac{273 + Z_{17}}{273 + Z_{16}}}$ $Z_{20} - Z_{21}$
X26	КПД газовой турбины	Доли ед.	$X_{26} = \frac{Z_{20} - Z_{21}}{(273 + Z_{20}) \times (1 - \frac{1}{(Z_{18}/Z_{19})^{0.25}})}$
X27	КПД паровой турбины	Доли ед.	$X_{27} = \frac{Z_{24} - Z_{25}}{(273 + Z_{24}) \times (1 - \frac{1}{(Z_{22}/Z_{23})^{0.25}})}$

 Таблица 2.3 - Нормативные значения нижней и верхней границ вычисляемых

 диагностических показателей

№	Ед. изм.	Нижняя граница	Верхняя граница
<i>X</i> 1	Доли ед.	0.9566	0.9576
<i>X</i> 2	Доли ед.	0.9576	0.9927
<i>X</i> 3	Доли ед.	0.0959	0.0994
<i>X</i> 4	К	514.8	522.9
<i>X</i> 5	МПа	0.6554	0.6780
<i>X</i> 6	M^3/T	726.3	743.4
<i>X</i> 7	Безразмерная величина	145.8*10^6	148.6*10^6
X8	Безразмерная величина	6.146	6.239
<i>X</i> 9	M^3/T	81.48	91.56

№	Ед. изм.	Нижняя граница	Верхняя граница
<i>X</i> 10	Доли ед.	0.0267	0.0283
<i>X</i> 11	M^3/M^3	1.915	1.941
<i>X</i> 12	Безразмерная величина	0.0283	0.0622
<i>X</i> 13	M^3/M^3	0.0311	0.0316
<i>X</i> 14	Безразмерная величина	3.699	3.701
<i>X</i> 15	M^3/T	807.8	834.9
<i>X</i> 16	M^3/T	2988	3089
<i>X</i> 17	M^3/T	56.81	63.57
<i>X</i> 18	M^3/T	2.628	15.72
<i>X</i> 19	M^3/T	3044	3243
X20	M^3/T	33.48	38.91
X21	M^3/T	298.4	323.2
X22	M^3/T	478.6	509.9
X23	M^3/T	273.8	559.1
X24	Доли ед.	0.8966	0.9312
X25	Доли ед.	0.8225	0.8843
X26	Доли ед.	0.4926	0.5099
X27	Доли ед.	0.5979	0.6926

2.2. Алгоритм обнаружения аномалий и определения момента бифуркации на основе метода двойного скользящего окна

Непрерывный многостадийный технологический процесс производства неконцентрированной азотной кислоты необходимо рассматривать как сложную динамическую систему. Динамическая система может быть в двух состояниях: стационарном нестационарном. Стационарность динамической заключается в неизменности ее параметров и структуры, но под влиянием возмущающих воздействий, изменяющих ее состояние, система может перейти в нестационарное состояние. Переходный процесс определяет новое установившееся стационарное состояние системы, которое не зависит от начального. Бифуркация – это такой вариант развития ситуации, когда система переходит от устойчивости к [73, 74] Таким образом задача поиска аномалий непрерывного многостадийного технологического процесса сводится к обнаружению бифуркаций процесса. [75 - 78]

Для решения задачи обнаружения точки бифуркации в непрерывном многостадийном технологическом процессе необходимо исследовать непрерывный поток диагностических переменных от сенсоров технологического оборудования. Наблюдения осуществляются через равные промежутки времени Δt . Множество наблюдаемых за период времени T значений образуют многомерный (D - мерный) временной ряд, который отражает динамику состояния технологического процесса. Система измерений включает D сенсоров технологического оборудования. Таким образом, для любого сенсора d=1,2...,D временной ряд $y_1^d,y_2^d,...,y_t^d$ представляет собой множество значений технологического параметра y_t^d измеренных в момент времени t. На значения этих параметров накладывают технологические ограничения в виде верхних y_u^d и нижних y_t^d границ. Если технологический процесс находится в исправном состоянии, то значения диагностических переменных колеблются в

заданных пределах. Выход за пределы нормативных границ означает переход системы в работоспособное состояние или указывает на возможную неисправность в технологическом оборудовании. Также стоит заметить, что даже при исправно работающем оборудовании иногда могут возникать всплески (шумы), когда значения диагностической переменной выходят за нормативные границы. Переход технологического процесса из исправного в работоспособное состояние возможен при наличии определенной устойчивой тенденции движений значений диагностических переменных за пределы нормативных границ. Следовательно, точка бифуркации определяется моментом перехода случайного процесса из стационарного в нестационарное состояние. [79, 80]

Для поиска бифуркаций используется метод анализа потоковых данных с помощью двойного скользящего окна, суть которого заключается в проверки условий стационарности на основе выборочных данных для коротких временных рядов. [81, 82]

Алгоритм обработки потоковых данных содержит следующие шаги.

- 1. Формирование исходного временного ряда размера $H Y^d = [y_1^d, y_2^d, ..., y_H^d]$ для рассматриваемого датчика d, где H кратно N.
- 2. Разделим получившийся временной ряд на N кортежей размера h и получим $k=\overline{1;N}$ временных рядов $Y^{d,k}=\left[y_1^{d,k},y_2^{d,k},\dots,y_h^{d,k}\right].$
- 3. Обрабатываем каждый получившийся кортеж $Y^{d,k}$ с помощью алгоритма скользящего окна размера l и на выходе получим множество кортежей $Y^{d,k} = [y_1^{d,k}, y_2^{d,k}, ..., y_{h-l+1}^{d,k}]$. В данном алгоритма скользящего окна используется как низкочастотный фильтр, подавляющий кратковременные случайные выбросы значений диагностических переменных.

- 4. Следующим этапом считаем средние значения и квадраты средних значений по каждому кортежу $Y^{d,k}$ и на их основе формируем два кортежа $[\overline{y_{d,1}},\overline{y_{d,2}},...,\overline{y_{d,k}},...\overline{y_{d,N}}]$ и $[\overline{y_{d,1}^2},\overline{y_{d,2}^2},...\overline{y_{d,k}^2},...\overline{y_{d,N}^2}]$.
- 5. Следующим этапом проверяем полученные последовательности на наличие тренда, используя модификацию критерия Фостера-Стюарда. Для этого рассчитываем множества u_k , v_k , u_k^2 и u_k^2 по формулам:

$$u_{k} = \begin{cases} 1 \leftarrow if \ \overline{y_{k}} > \overline{y_{k-1}}, \overline{y_{k-2}}, \dots, \overline{y_{1}} \\ 0 \leftarrow else \end{cases}$$

$$v_{k} = \begin{cases} 1 \leftarrow if \ \overline{y_{k}} < \overline{y_{k-1}}, \overline{y_{k-2}}, \dots, \overline{y_{1}} \\ 0 \leftarrow else \end{cases}$$

$$u_{k}^{2} = \begin{cases} 1 \leftarrow if \ \overline{y_{k}^{2}} > \overline{y_{k-1}^{2}}, \overline{y_{k-2}^{2}}, \dots, \overline{y_{1}^{2}} \\ 0 \leftarrow else \end{cases}$$

$$v_{k}^{2} = \begin{cases} 1 \leftarrow if \ \overline{y_{k}^{2}} < \overline{y_{k-1}^{2}}, \overline{y_{k-2}^{2}}, \dots, \overline{y_{1}^{2}} \\ 0 \leftarrow else \end{cases}$$

6. Следующим этапом для проверки гипотезы об отсутствии стационарности во временных рядах вычисляем две статистики

$$W = \sum_{k=2}^{N} (u_k - v_k)$$

$$F = \sum_{k=2}^{N} (u_k + v_k)$$

и аналогично для квадратов

$$W^2 = \sum_{k=2}^{N} (u_k^2 - v_k^2)$$

$$F^2 = \sum_{k=2}^{N} (u_k^2 + v_k^2)$$

7. Далее считаем значения t_W , t_F , t_{W^2} и t_{F^2} по формулам

$$t_W = rac{W}{\sigma_W}$$
 $t_{W^2} = rac{W^2}{\sigma_W}$ $t_F = rac{F - \mu}{\sigma_F}$ $t_{F^2} = rac{F^2 - \mu}{\sigma_F}$

где

$$\sigma_W = (2 \times \sum_{k=2}^{N} \frac{1}{k})^{0.5}$$

$$\sigma_F = (\mu - 4 \times \sum_{k=2}^{N} \frac{1}{k^2})^{0.5}$$

$$\mu = 2 \times \sum_{k=2}^{N} \frac{1}{k}$$

8. При отсутствии тренда нормализованные значения статистик приближенно описываются распределением Стьюдента с числом степеней свободы df = N. Сравниваем полученное значение с рассчитанными значениями по модулю t_W , t_F , t_{W^2} и t_{F^2} и при превышении полученных значений фиксируем переход процесса в нестационарное состояние.

2.3. Алгоритм формирования гипотез о причинах предаварийных состояний с помощью функций доверия.

Теория свидетельств (ТС) или теория Демпстера-Шафера [83 - 90] является общей основой для рассуждений с неопределенностью и позволяет объединить свидетельства из разных источников и прийти к определенной степени уверенности в наличии того или иного события.

Анализ диагностических переменных заключается в формировании гипотез о причинах предаварийного состояния технологических цепей с помощью теории свидетельств. Для этого используются данные, полученные с помощью алгоритма двойного скользящего окна и матрицы экспертных оценок

где r — число возможных гипотез, n — число рассматриваемых диагностических показателей, d — диагностический показатель, A — гипотеза, m — экспертная оценка (вероятность от 0 до 1).

Для формирования гипотез необходимо выполнить следующие шаги.

Отбираем из матрицы Λ только те строки d_n , в потоковых данных которых были найдены бифуркации, и рассчитываем для них индикаторные функции P_n . Измеряемая диагностическая переменная представляется в виде интервального числа $D_n = [\underline{d_n}, \overline{d_n}]$, где $\underline{d_n}$ — нижняя граница, а $\overline{d_n}$ — верхняя граница. Диапазон нормативных значений диагностических переменных $S_n = [\underline{\delta_n}, \overline{\delta_n}]$, где $\underline{\delta_n}$ — нижняя граница, а $\overline{\delta_n}$ — верхняя граница.

Для случая, когда кризисное состояние наступает при выходе интервала измеряемой диагностической переменной $D_n = [\underline{d_n}, \overline{d_n}]$ за верхнюю границу диапазона его нормативных значений $\overline{\delta_n}$ используется следующая индикаторная функция

$$P_n = egin{cases} 0$$
, если $\overline{d_n} \leq \overline{\delta_n} \ 1$, если $\underline{d_n} \leq \overline{\delta_n} \ rac{\overline{d_n} - \overline{\delta_n}}{\overline{d_n} - \underline{d_n}}$, если $\underline{d_n} < \overline{\delta_n} < \overline{d_n}$

Для случая, когда кризисное состояние наступает при выходе интервала D_n за нижнюю границу диапазона его нормативных значений $\underline{\delta_n}$ используется следующая индикаторная функция

$$P_n = egin{cases} 0$$
, если $\dfrac{d_n}{d_n} \geq \dfrac{\delta_n}{n} \\ 1$, если $\dfrac{d_n}{d_n} \leq \dfrac{\delta_n}{n} \\ \dfrac{\dfrac{\delta_n - d_n}{d_n}}{d_n - d_n}$, если $\dfrac{d_n}{d_n} < \dfrac{\delta_n}{d_n} < d_n \end{cases}$

Вычисление нормированных значений базовых вероятностей с помощью формулы

$$\widetilde{m}_{nr} = \frac{m_{nr}}{\sum_{i=1}^{r} m_{ni}}$$

Затем используя значения индикаторной функции перераспределяем значения вероятностей с помощью формул

$$m_{nr}=m_{nr}\times P_n$$
 и $m_{n*}=1-P_n$

Для объединения нескольких гипотез используется теория свидетельств. Для объединения различных свидетельств с распределениями вероятностей m_1 и m_2 в пользу одной гипотезы используется правило Демпстера-Шафера

$$m_1 \oplus m_2(A) = \frac{1}{1 - M(\emptyset)} \times \sum_{Y \cap Z = A} m_1(Y) \times m_2(Z)$$

где

$$M(\emptyset) = \sum_{Y \cap Z = \emptyset} m_1(Y) \times m_2(Z)$$

В соответствии с теорией свидетельств определяются оценки степени уверенности $Bel(A_r)$ и степени правдоподобия $Pl(A_r)$ принятия гипотез с помощью формул

$$Bel(A_r) = \sum \{m_n(C) | C \subseteq A_r\}$$

$$Pl(A_r) = 1 - Bel(\overline{A_r}) = 1 - \sum \{m_n(C) | C \cap A_r \neq \emptyset\}$$

где C – множество событий.

На основе полученных базовых вероятностей вычисляем функции доверия $Bel(A_r)$ и правдоподобия $Pl(A_r)$ для всех рассматриваемых гипотез, и определяем наиболее вероятную.

Достоинство такого подхода состоит в том, что решение, найденное с помощью теории свидетельств, использует полную группу событий по анализу кризисных ситуаций.

2.4. Формирование базы знаний экспертной системы и разработка системы логического вывода

Сложность и трудоемкость процесса разработки экспертных систем обусловлена главным образом сложностью и трудоемкостью этапа разработки базы знаний, включающего задачи по формализации предметных знаний и их описании на определенном языке представления знаний. [91-98]

В качестве программной среды для разработки экспертной системы была выбран язык CLIPS т.к. он достаточно популярен и прост в понимании и использовании. [99]

Первый этап заключается в том, что необходимо определиться со структурой экспертной системы. После анализа работ по разработке экспертных систем и баз знаний для сложных технологических систем выбор пал на модульную структуру баз знаний. Такой подход позволит разделить базу знаний на несколько независящих друг от друга файлов. [100-102]

Проанализировав структуру выбранного производства и работы по анализа технологического процесса было выявлено, что лучше всего разделить структуру технологического процесса производства неконцентрированной азотной кислоты на цепи потоков отдельных веществ и вынести их в отдельные модули, что позволит реализовать модульную структуру базы знаний. [23, 68, 72]

Следующим этапом необходимо будет выявить и построить деревья отказов в выбранных цепях и уже на их основе построить базу знаний.

Пример построенного дерева отказов представлен на рисунке 2.2-2.6 и в приложении Б.

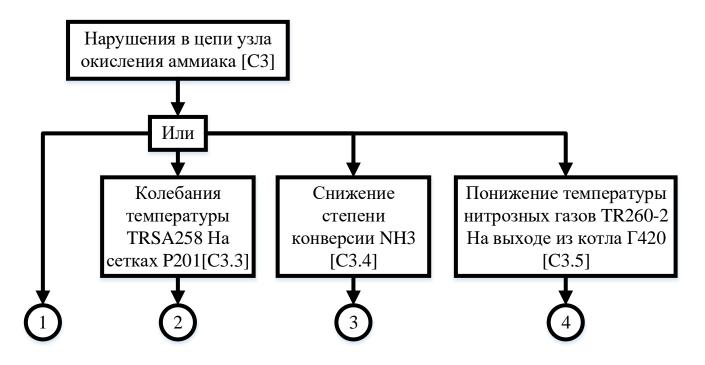


Рисунок 2.2 - Дерево отказов цепи окисления аммиака

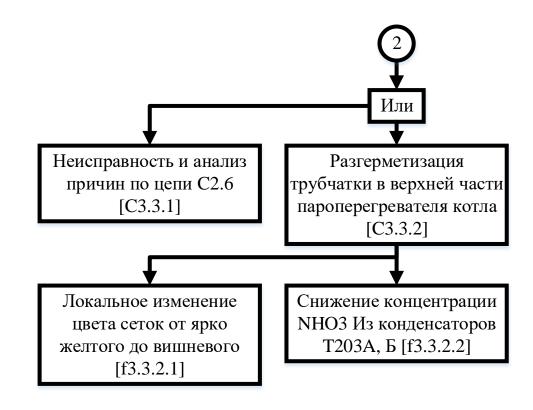


Рисунок 2.3 - Дерево отказов цепи окисления аммиака

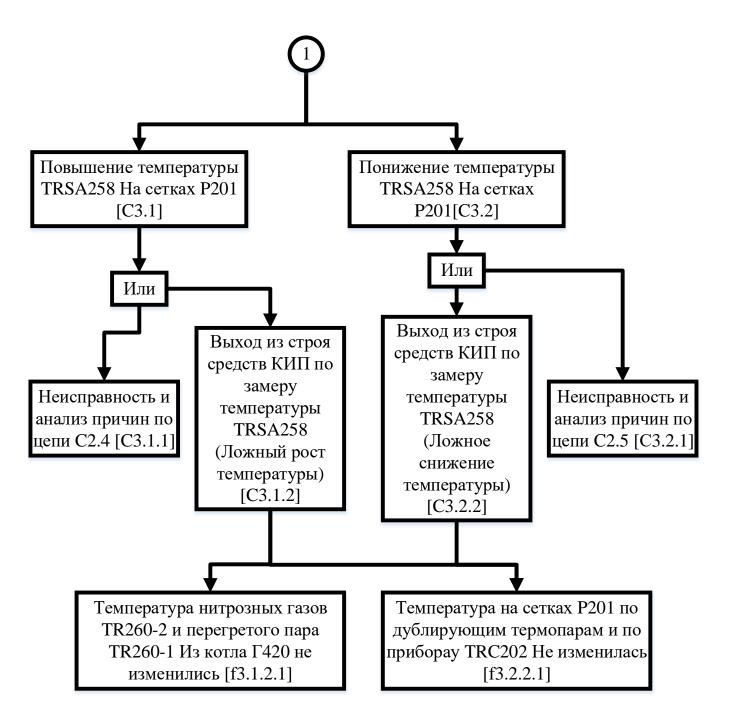


Рисунок 2.4 - Дерево отказов цепи окисления аммиака

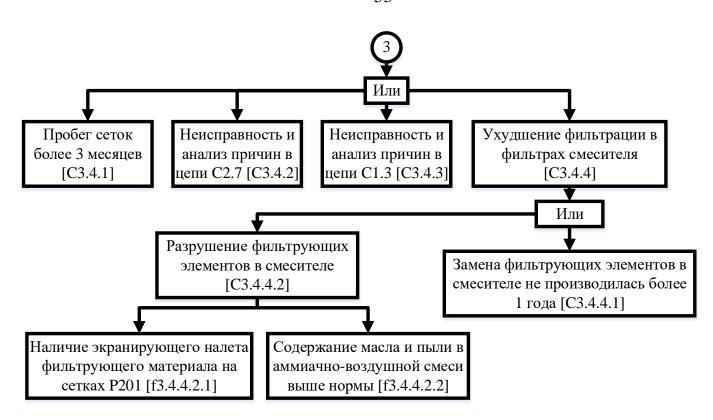


Рисунок 2.5 - Дерево отказов цепи окисления аммиака

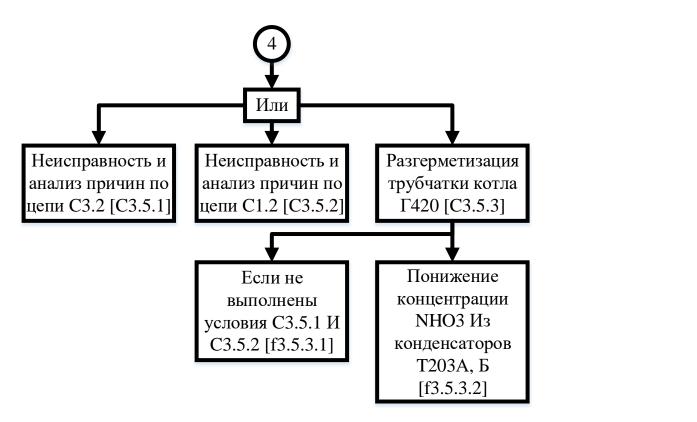


Рисунок 2.6 - Дерево отказов цепи окисления аммиака

ГЛАВА З АРХИТЕКТУРА И ОПИСАНИЕ КОМПЛЕКСА ПРОГРАММНЫХ СРЕДСТВ ДИНАМИЧЕСКОЙ ЭКСПЕРТНОЙ СИСТЕМЫ

С целью исследования разработанной методики был разработан программный комплекс [103], который включает в себя (основные блоки):

- 1. Модуль анализа текущего состояния.
- 2. Модуль формирования гипотез.
- 3. Модуль логического вывода.

Данный программный модуль позволяет в полной мере оценить возможности, достоинства и недостатки предложенной методики. В связи с тем, что основная цель данного программного средства — реализация методики, основное внимание при разработке уделялось его функциональности, а не быстродействию и оптимизации выходного кода для конкретного применения. Входные данные для проверки методики моделируются или берутся из архивных данных в файлах. Структурная схема разработанного программного комплекса представлена на рисунке 3.1.

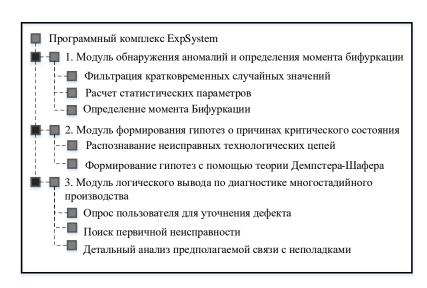


Рисунок 3.1 - Структурная схема программного комплекса

Интеграционная схема программного комплекса представлена на рисунке 3.2.

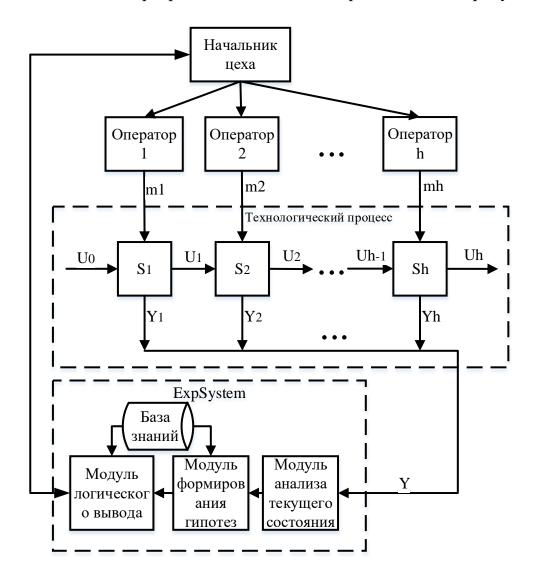


Рисунок 3.2 - Интеграционная схема программного комплекса ExpSystem

Данный программный комплекс разработан \mathbf{c} помощью объектноориентированного языка программирования С#. Язык С# является мощным и гибким объектно-ориентированным языком программирования с поддержкой современных технологий, таких как LINQ и асинхронное программирование. С# предлагает высокую производительность, что важно для эффективного выполнения сложных выбором для операций. Это делает его идеальным разработки сложных программных комплексов.

3.1. Программный модуль анализа текущего состояния технологического процесса на основе метода двойного скользящего окна

Алгоритм, описанный в разделе 2.2 реализован в виде отдельного класса, который реализует предложенную методику для одного анализируемого показателя. Данная реализация позволяет достаточно просто масштабировать функционал для нескольких показателей.

При инициализации класса передаются следующие параметры:

- Размер анализируемого потока данных.
- Количество кортежей.
- Размер скользящего окна.
- Название потока.
- Класс генератор данных.

Для хранения данных и последующего анализа в классе используются следующие поля:

- Очередь исследуемого временного ряда.
- Очередь кортежей.
- Очередь первого скользящего окна.
- Очереди второго скользящего окна.
- Результат статистического анализа.

Были объявлены следующие функции:

- Функция, определения следующего значения в потоке данных.
- Функция, реализующая первое скользящее окно.
- Функция, реализующая второе скользящее окно.
- Функции расчета статистических показателей.

Блок схема алгоритма разработанного класса представлена на рисунке 3.3.

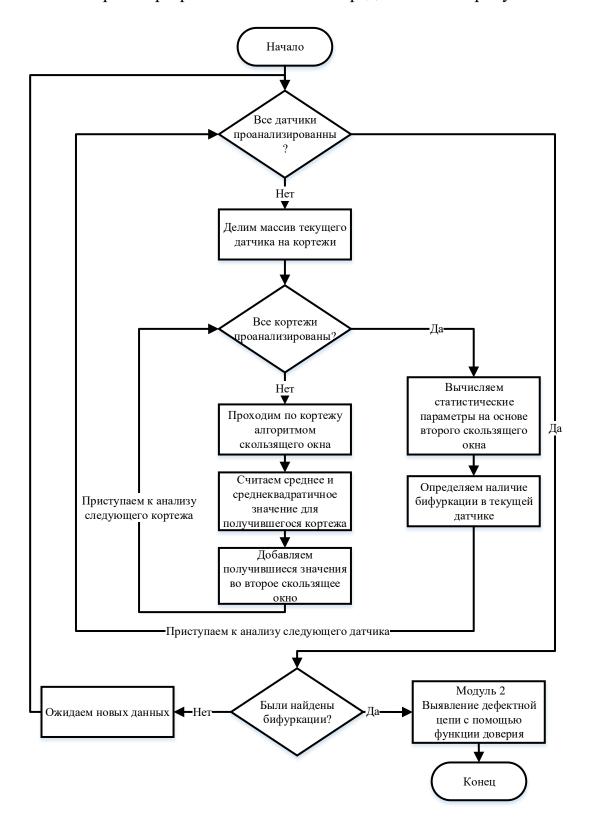


Рисунок 3.3 - Блок-схема алгоритма первого программного модуля

3.2. Программный модуль формирования гипотез о причинах предаварийных состояний с помощью функций доверия

Алгоритм, описанный в разделе 2.3 разработан в виде отдельного класса, который формирует гипотезы о причинах предаварийного состояния с помощью функций доверия.

Для инициализации класса необходимо передать следующие параметры:

- Набор стадий технологических процессов.
- Список наименований диагностических переменных.
- Матрицу экспертных оценок.
- Список индикаторных функций.

Для хранения данных и последующего анализа в классе используются следующие поля:

- Оценочная матрица.
- Массив нормированных значений базовых вероятностей.
- Массив перераспределенных значений базовых вероятностей.
- Список диагностических переменных.
- Список стадий производства.
- Нечеткое множество возможных гипотез.

И были объявлены следующие функции:

- Функция формирования матрицы экспертных оценок.
- Функция создания нечеткого множества возможных гипотез.
- Функция расчета гипотез.
- Функция расчета степени уверенности и правдоподобия.
- Функция объединения двух различных свидетельств.

• Функция объединения гипотез по правилу Демпстера.

Блок схема алгоритма представлена на рисунке 3.4.

Рисунок 3.4 - Блок-схема алгоритма второго программного модуля

Интерфейс для взаимодействия с модулем анализа текущего состояния технологического процесса представлен на рисунке 3.5.

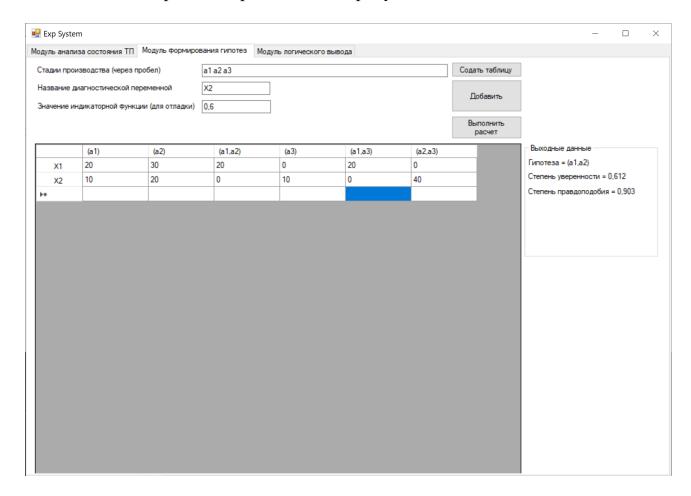


Рисунок 3.5 - Интерфейс модуля формирования гипотез о причинах предаварийных состояний с помощью функций доверия

3.3. Программный модуль логического вывода с использованием динамической экспертной системы

Основной задачей данного программного модуля является реализация экспертной системы и организация взаимодействия пользователя системы и данных, полученных как из второго модуля, так и из базы знаний.

В качестве ядра экспертной системы была взята библиотека CLIPS.

Для этого был разработан пользовательский интерфейс для взаимодействия с базой знаний и ядром CLIPS.

Также был разработан класс, целью которого является подключение к базе знаний, сбор необходимой информации и осуществления взаимодействия между пользователем, данными и средой CLIPS. Процесс взаимодействия пользователя с ЭС представлен на рисунке 3.6.

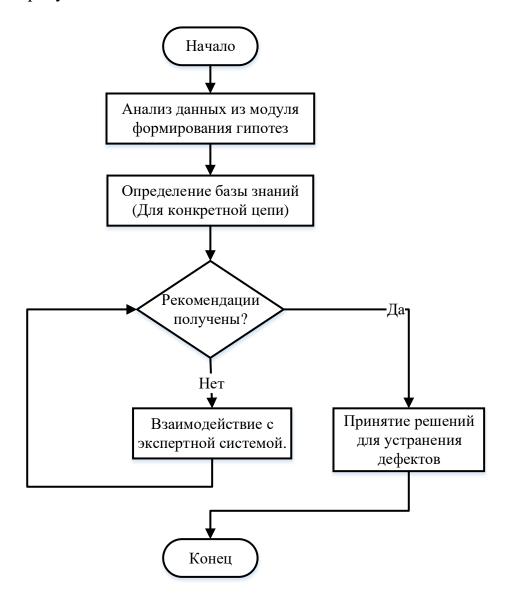


Рисунок 3.6 - Блок-схема процесса взаимодействия пользователя с ЭС

ГЛАВА 4 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПО ОБОСНОВАНИЮ ПРЕДЛОЖЕННОЙ МЕТОДИКИ ПОВЫШЕНИЯ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ НА ПРИМЕРЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ПРОИЗВОДДСТВА НЕКОНЦЕНТРИРОВАННОЙ АЗОТНОЙ КИСЛОТЫ

4.1. Сбор и описание входных данных для проверки программных модулей

Для проверки работоспособности разработанных программных модулей были использованы смоделированные потоки данных.

Для моделирования измеряемых переменных технологического процесса (описанных в таблице 2.1) было принято решение использовать Марковские процессы (авторегрессия 1-го порядка). [104-106]

Общая формула, используемая в модели:

$$Z(t) = r \times s_{t-1} + n \times nc + cv$$

где r — коэффициент определяющий влияние значения измеренного параметра в предыдущий момент времени на значение текущего параметра, s — значение измеренного параметра в момент времен, n — шум. (Случайное значение от 0 до 1), nc — множитель шума, cv — корректирующие значения для сдвига значения на необходимый диапазон.

Далее экспериментальным путем были определены соответствующие значения коэффициентов для моделирования параметров из таблице 2.1. Значения полученных коэффициентов представлены в таблица 4.1.

 Таблица 4.1 - Значения коэффициентов для моделирования измеряемых

 параметров

№ измеряемой технологической	r	nc	cv
переменной в соответствии с			
таблицей 2.1.			
<i>Z</i> 1	0.99	0.038	53.5
Z2	0.99	0.038	14.2
Z3	0.967	16.061	5000
Z4	0.94	174.5	47000
Z 5	0.975	0.6	888
Z6	0.99	0.265	53
Z 7	0.99	0.265	739
Z8	0.9	0.00003	0.0018
Z 9	0.995	0.001	0.65
Z10	0.99	1.35	230
Z11	0.99	0.004	3.18
Z12	0.993	0.25	1.5
Z13	0.99	0.265	165.3
Z14	0.99	0.004	2.68
Z15	0.99	0.038	9
Z16	0.99	0.4	41.2
<i>Z</i> 17	0.99	0.7	188.6
Z18	0.967	0.02	8.85
Z19	0.95	0.002	0.033
Z20	0.99	0.4	737
Z21	0.99	0.7	348.5
Z22	0.99	0.08	34.4
Z23	0.99	0.038	14.1

№ измеряемой технологической переменной в соответствии с таблицей 2.1.	r	пс	cv
Z24	0.99	0.7	401
Z25	0.99	0.7	311

На основе данных из таблиц 2.1 - 2.4 и 4.1 в графической среде моделирования AnyLogic была построена модель технологического процесса производства неконцентрированной азотной кислоты. Полученные значения при моделировании процесса соответствуют диапазонам значений, описанных в таблицах 2.1 и 2.3. Примеры моделирования представлены на рисунках 4.1 - 4.3.

Пример работы моделирования процесса Z5 (рисунок 4.1) — Температуры нитрозного газа под сетками контактного аппарата.

Нижняя граница – 898

Верхняя граница – 902

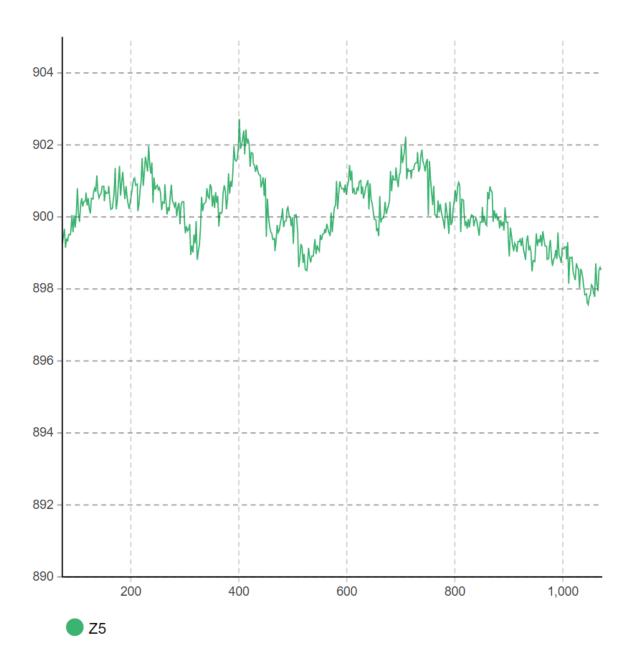


Рисунок 4.1 - График моделирования случайного процесса Z5 - Температуры нитрозного газа под сетками контактного аппарата

Пример работы моделирования процесса Z11 (рисунок 4.2) — Давление на нагнетании воздушного компрессора.

Нижняя граница – 3.36

Верхняя граница – 3.40

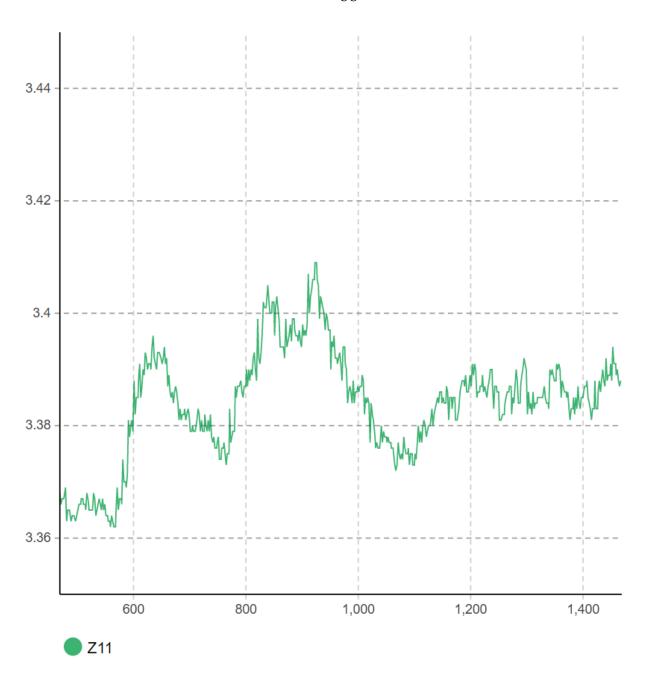


Рисунок 4.2 - График моделирования случайного процесса Z11 - Давление на нагнетании воздушного компрессора

Пример работы моделирования процесса Z24 (рисунок 4.3) — Температура пара на входе в паровую турбину.

Нижняя граница – 435

Верхняя граница – 440

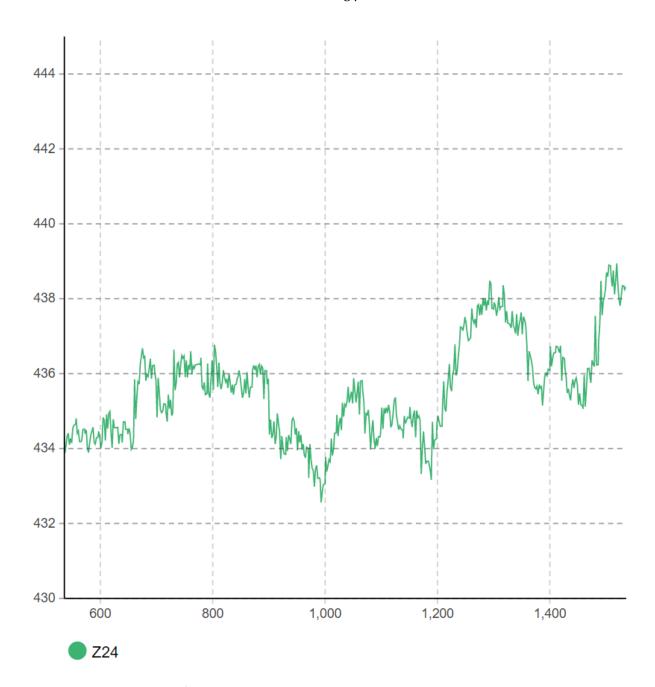


Рисунок 4.3 - График моделирования случайного процесса Z24 - Температура пара на входе в паровую турбину

4.2. Экспериментальное обоснование алгоритма обнаружения аномалий и определения момента бифуркаций на основе метода двойного скользящего окна

В качестве примера для обнаружения аномалий и определения момента бифуркации на основе метода двойного скользящего окна рассмотрим следующую

ситуацию. За основу возьмем данные, которые приходят с датчиков Z5 - температура нитрозного газа под сетками контактного аппарата и Z20 - температура газов на входе в газовую турбину. В момент времени T происходит фиксация текущего набора параметров для формирования временного ряда Y^d для рассматриваемых датчиков d=2 и размера временного ряда H=20. Таким образом получаем следующий набор данных:

Таблица 4.2 - Исходные данные

Y^d	Временной ряд
<i>Y</i> ¹	[854, 854, 854, 853, 853, 852, 852, 852, 850, 851,
	851, 852, 852, 850, 851, 854, 853, 854, 855, 855]
<i>Y</i> ²	[854, 854, 854, 853, 853, 852, 854, 855, 856, 857,
	857, 858, 858, 859, 860, 865, 870, 875, 877, 900]

Далее разделяем получившиеся временные ряды на N кортежей размера h=5 и получим $k=\overline{1;N}$ (N=20/5=4) временных рядов $Y^{d,k}=\left[y_1^{d,k},y_2^{d,k},...,y_h^{d,k}\right]$:

Таблица 4.3 - Сформированные кортежи

$Y^{d,k}$	Данные
Y ^{1,1}	[854, 854, 854, 853, 853]
Y ^{1,2}	[852, 852, 852, 850, 851]
Y ^{1,3}	[851, 852, 852, 850, 851]
Y ^{1,4}	[854, 853, 854, 855, 855]
$Y^{d,k}$	[854, 854, 854, 853, 853]
$Y^{d,k}$	[852, 854, 855, 856, 857]
$Y^{d,k}$	[857, 858, 858, 859, 860]
$Y^{d,k}$	[865, 870, 875, 877, 900]

Следующим этапом обрабатываем каждый получившийся кортеж $Y^{d,k}$ с помощью алгоритма скользящего окна размера l=3 и на выходе получим множество картежей $Y^{d,k}=[y_1^{d,k},y_2^{d,k},...,y_{h-l+1}^{d,k}]$:

Таблица 4.4 - Кортежи после обработки первым скользящим окном

$Y^{d,k}$	Данные
Y ^{1,1}	[854, 853.6, 853.3]
Y ^{1,2}	[852, 851.3, 851]
Y ^{1,3}	[851.6, 851.3, 851]
Y ^{1,4}	[853.6, 854, 854.6]
$Y^{d,k}$	[854, 853.6, 853.3]
$Y^{d,k}$	[853.6, 855, 856]
$Y^{d,k}$	[857.6, 858.3, 859]
$Y^{d,k}$	[870, 874, 884]

Далее считаем средние значения по каждому кортежу $Y^{d,k}$ и на их основе формируем кортеж $[\overline{y_{d,1}},\overline{y_{d,2}},...,\overline{y_{d,k}},...\overline{y_{d,N}}]$:

Таблица 4.5 - Сформированные данные для второго скользящего окна

$\overline{\mathcal{Y}_{d,N}}$	Данные
$\overline{\mathcal{Y}_{1,N}}$	[853.63, 851.43, 851.3, 854.06]
$\overline{\mathcal{Y}_{2,N}}$	[853.63, 854.86, 858.3, 876]

Затем проверяем полученные последовательности на наличие тренда, используя модификацию критерия Фостера-Стюарда. Для этого рассчитываем множества u_d и v_d :

Таблица 4.6 - Результат проверки на наличие тренда

u_d и v_d	Данные
u_1 и v_1	[0, 0, 0] и [0, 0, 1]
u_2 и v_2	[0, 0, 0] и [1, 1, 1]

Далее для проверки гипотезы об отсутствии стационарности во временных рядах вычисляем две статистики F_d и W_d :

Таблица 4.7 - Рассчитанные статистики

	Данные
F_1	1
W_1	-1
F_2	2
W_2	-2

Затем считаем значения $t_{W,d}$, $t_{F,d}$:

Таблица 4.8 - Рассчитанные статистики

	Данные
$t_{W,1}$	-0.68
$t_{F,1}$	-1.7
$t_{W,2}$	-0.235
$t_{F,2}$	-1.36

Затем сравниваем полученные значения со значениями Стьюдента с числом степеней свободы N=20, которое равняется ~2.42. (=СТЬЮДЕНТ.ОБР.2X(0,025;20)). По результатам расчетов можно сделать вывод, что в потоке диагностических данных датчика d=1 бифуркаций не обнаружено т.к. - 0.68 < 2.42 и -1.7 < 2.42. и d=2 бифуркаций не обнаружено т.к. -0.235< 2.42 и -1.36< 2.42.

4.3. Экспериментальное обоснование алгоритма формирования гипотез о причинах предаварийных состояний с помощью функций доверия и базы знаний динамической экспертной системы

В качестве контрольного примера для определения кризисных состояний многостадийного производства рассмотрим следующую ситуацию.

Производственная система включает в себя три связанные между собой стадии производства a_1, a_2, a_3 .

 a_1 : Абсорбция нитрозных газов и получение неконцентрированной азотной кислоты.

 a_2 : Окисление аммиака (получение нитрозных газов NO и NO₂)

 a_3 : Подготовка сырья (очистка аммиака, смешение с воздухом, получение аммиачно-воздушной смеси).

Также есть база данных динамической экспертной системы для технологического производства неконцентрированной азотной кислоты, в которой хранятся как сами значения показателей, так и данные диагностической матрицы (экспертные оценки вероятности дефекта в цепи при выходе значения показателя за регламентные границы). Таблица экспертной оценки для рассматриваемого производства, представленная в таблице 4.9.

 Γ ипотезы (A_i) Показатели A_{I} $A_3 =$ $A_4=$ $A_5 =$ $A_6=\{$ A_2 $=\{a_1\}$ $=\{a_2\}$ $\{a_3\}$ $\{a_1;a_2\}$ $\{a_1;a_3\}$ $a_2;a_3$ 20 Z_1 20 30 0 20 0 \mathbb{Z}_2 30 0 30 0 40 10 20 10 Z_3 10 0 0 40

Таблица 4.9 - Экспертные оценки вероятности дефекта в цепи

Эффективность производственной системы оценивается тремя показателями Z_1, Z_2, Z_3 . Где:

- Z_I Концентрация продукционной кислоты.
- Z_2 Температура на нагнетании нитрозного нагнетателя.
- Z_3 Температура на всасывании нитрозного нагнетателя.

В некоторый момент времени значение экономического показателя эффективности Z_I на интервале наблюдения заключено в пределах [42.8%; 52.4%]. При регламентных границах [50-55%] вероятность ухудшения показателя эффективности определяется как

$$P_1 = (50,0-42,8)/(52,4-42,8) = 0,75.$$

В то же время значение технологического показателя эффективности Z_3 на интервале наблюдения заключено в пределах [53.0%; 58.0%]. При регламентных границах 50-55% вероятность ухудшения показателя эффективности по показателю Z_3 определяется как

$$P_3 = (58,0-55,0)/(58,0-53,0) = 0,6.$$

Значения диагностической переменной \mathbb{Z}_2 не выходят за границы диапазона.

Поскольку значение функции P_1 отлично от нуля, то активизируется нечеткое множество возможных гипотез ухудшения состояния по переменной Z_1 .

$$B_1 = \{A_1, A_2, A_4, A_5\}.$$

Аналогично, поскольку значение функции P_3 отлично от нуля, активизируется нечеткое множество возможных гипотез ухудшения состояния по переменной Z_3 .

$$B_3 = \{A_1, A_2, A_3, A_6\}.$$

Нормированные значения базовых вероятностей будут

$$m_1: m_1(A_1) = 0.222; m_1(A_2) = 0.333; m_1(A_4) = 0.222; m_1(A_5) = 0.222,$$

$$m_3: m_3(A_1) = 0.125; m_3(A_2) = 0.25; m_3(A_3) = 0.125; m_3(A_6) = 0.5.$$

Используя значения индикаторной функция P_k , перераспределяем значения вероятности

$$m_1: m_1(A_1) = 0.17; m_1(A_2) = 0.25; m_1(A_4) = 0.17; m_1(A_5) = 0.17; m_1(A^*) = 0.24,$$

$$m_3: m_3(A_1) = 0.075; m_3(A_2) = 0.15; m_3(A_3) = 0.075; m_3(A_6) = 0.3; m_3(A^*) = 0.4.$$

Из распределения вероятности видно, что степень уверенности определяется не только мерами вероятности, закрепленными непосредственно за

соответствующими гипотезами, но еще и дополнительной мерой, закрепленной за подмножествами A^* , причем неизвестно как эта общая мера распределена по элементам подмножеств.

Оценки степени уверенности $Bel(A_j)$ и степени правдоподобия $Pl(A_j)$, рассчитанные для k=1 (показатель Z_1) приведены в таблице 4.10.

 $\overline{A_1 = \{a_1\}}$ $A_2 = \{a_2\}$ $A_4 = \{a_1; a_2\}$ $A_5 = \{a_1; a_3\}$ A^* A_i $m(A_i)$ 0,17 0,25 0,17 0,17 0,24 $Bel(A_i)$ 0,17 0,25 0,34 0,59 1 $Pl(A_i)$ 0,75 0,75 0,66 1,0 1

Таблица 4.10 - Интервальные оценки для k=1

Оценки степени уверенности $Bel(A_j)$ и степени правдоподобия $Pl(A_j)$ для k=3 (показатель Z_3) приведены в таблице 4.11.

A_j	$A_1 = \{a_1\}$	$A_2 = \{a_2\}$	$A_3 = \{a_3\}$	$A_6 = \{a_2; a_3\}$	A^*
$m(A_j)$	0,075	0,15	0,075	0,3	0,4
$Bel(A_j)$	0,075	0,15	0,075	0,525	1
$Pl(A_j)$	0,475	0,85	0,775	0,925	1

Таблица 4.11 - Интервальные оценки для k=3

Расчетные значения индикаторов нарушения границ приемлемой эффективности $P_1=0.75$ и $P_3=0.6$ активизируют два различных свидетельства с

распределениями вероятностей в пользу одной гипотезы. Для их объединения используем правило Демпстера. Результаты использования правила Демпстера приведены в таблице 4.12.

Таблица 4.12 - Результат объединения двух различных свидетельств

	A_I	A_2	A_4	A_5	A^*
	0,17	0,25	0,17	0,17	0,24
A_I	A_I	Ø	A_I	A_{I}	A_I
0,075	0,01	0,02	0,01	0,01	0,02
A_2	Ø	A_2	A_2	Ø	A_2
0,15	0,03	0,04	0,03	0,03	0,04
A_3	Ø	Ø	Ø	A_3	A_3
0,075	0,01	0,02	0,01	0,01	0,02
A_6	Ø	A_2	A_I	A_3	A_6
0,3	0,05	0,08	0,05	0,05	0,07
A^*	A_I	A_2	A_4	A_5	A^*
0,4	0,07	0,10	0,07	0.07	0,10

Мера вероятности, вложенная в пустое множество

$$m < \emptyset > = 0.02 + 0.03 + 0.03 + 0.01 + 0.02 + 0.05 + 0.01 = 0.17.$$

Меры вероятности для гипотез о кризисных агентах рассчитываются следующим образом

$$m(A_1) = (0.01+0.01+0.01+0.02+0.07)/0.83 = 0.14$$

 $m(A_2) = (0.04+0.03+0.04+0.08+0.05+0.10)/0.83 = 0.40$
 $m(A_3) = (0.01+0.02+0.05)/0.83 = 0.09$
 $m(A_4) = 0.07/0.83 = 0.08$
 $m(A_5) = 0.07/0.83 = 0.08$
 $m(A_6) = 0.07/0.83 = 0.08$
 $m(A^*) = 0.10/0.83 = 0.12$

Сумма всех комбинированных базовых вероятностей равна 1. На основе этих базовых вероятностей вычисляем функции доверия $Bel(A_j)$ и правдоподобия $Pl(A_j)$ для всех рассматриваемых гипотез. Оценки степени уверенности и степени правдоподобия для объединенных свидетельств приведены в таблице 4.13.

Таблица 4.13 - Интервальные оценки для объединенных свидетельств

A_{j}	$A_I = \{a_I\}$	$A_2 = \{a_2\}$	$A_3=\{a_3\}$	$A_4 = \{a_1; a_2\}$	$A_5=\{a_1;a_3\}$	$A_6 = \{a_2; a_3\}$	A^*
\overline{m}	0,14	0,40	0,09	0,08	0,08	0,08	0,12
(A_j)							
Bel	0,14	0,40	0,09	0,62	0,31	0,57	1
(A_j)							
Pl	0,44	0,69	0,38	0,91	0,60	0,86	1
(A_j)							

Соответствующие интервальные оценки для рассматриваемых гипотез

 A_1 : [0,14; 0,44],

 A_2 : [0,40; 0,69],

 A_3 : [0,09; 0,38],

 A_4 : [0,62; 0,91],

 A_5 : [0,31; 0,60],

 A_6 : [0,57; 0,86],

 A^* : [1,0;1,0].

Результаты расчетов с использованием традиционных методов и метода Демпстера-шафера представлены в таблице 4.14.

Таблица 4.14 — Результаты расчетов и сравнение с традиционными методами

Метод нечетких множеств	Метод Демстера-Шафера
Результат:	Результат:
A_{I} : 0,15	A_I : [0,14; 0,44]
A_2 : 0,22	A_2 : [0,40; 0,69]
$A_4: 0,15$	A_3 : [0,09; 0,38]
A_5 : 0,15	A_4 : [0,62; 0,91]
A_6 : 0,26	A_5 : [0,31; 0,60]
	A_6 : [0,57; 0,86]
Отказ от гипотезы о нарушении в цепи a_3	Гипотезы о критическом состоянии цепи
приводит к ошибке второго рода	a_3 оставлены и будут учитываться при
	дальнейшем анализе.

Использование предложенной методики показало, что традиционный метод нечетких множеств на первом шаге вычислений исключает не перспективные

варианты, что приводит к ошибкам в диагностике. Перераспределения вероятностей вследствие наличия дополнительного свидетельства позволило выявить, что наиболее вероятны гипотезы A_4 и A_6 и вероятность наличия дефекта в стадиях a_1 и a_2 составила $[0,62\%;\ 0,91\%]$, а в стадиях a_2 и a_3 составила $[0,57\%;\ 0,86\%]$ соответственно. На третьем этапе принятия решения с помощью динамической экспертной системы было принято решение о дефекте в стадии a_3 . Использование традиционных методов, в свою очередь, не допускает гипотезу A_3 (т.к. вероятность наличия дефекта в ней составляет менее 6%) и этот вариант исключается, что приводит к ошибке второго рода и значительным затратам по времени на выявление реальной причины критической ситуации.

4.4. Оценка показателей надежности функционирования технологического процесса с использованием предложенной методики

В период с 2022 по 2024 год была организована поездка на производство неконцентрированной азотной кислоты в АО НАК "Азот". В ходе визита был проведен детальный анализ работы агрегата УКЛ-7, включающий сбор данных для дальнейшего исследования и обсуждение возможностей внедрения программного комплекса и разработанной методики, направленной на повышение эксплуатационной надежности оборудования. Некоторые собранные данные представлены в приложении В.

На основе этих данных рассчитаем вероятности безотказной работы, плотности отказов и интенсивности отказов для некоторых основных цепей.

1. Газовая цепь подачи воздуха (таблицы 4.15-16).

В данной цепи можно выделить $N_0 = 12$ основных параметров.

Таблица 4.15 - Полученные данные для газовой цепи подачи воздуха

Период	Δt	N(t)	n(t)	$n(t + \Delta t)$
t1 = 0	100	11	1	1
t2 = 100	100	11	1	0
t3 = 200	100	10	2	1
t4 = 300	100	9	3	1
t5 = 400	100	8	4	1
t6 = 500	100	8	4	0

Где Δt — длительность периода, N(t) — количество датчиков с нормативными показаниями, n(t) — количество датчиков, значения показателей которых, выходили за нормативные границы, $n(t+\Delta t)$ — количество датчиков, значения которых вышли за нормативные границы в заданный период времени.

Таблица 4.16 - Рассчитанные значение для газовой цепи подачи воздуха

Вероят	ность	Вероятность		Плотность		Интенсивность	
отказа		безотка	зной	отказо	ЭВ	отказов	
		работы					
Q(t1)	0,083	<i>P</i> (<i>t</i> 1)	0,916	f(t1)	0,000000	<i>y</i> (<i>t</i> 1)	0,000000
Q(t2)	0,083	P(t2)	0,916	f(t2)	0,000037	<i>y</i> (<i>t</i> 2)	0,000909
Q(t3)	0,166	P(t3)	0,833	f(t3)	0,000037	<i>y</i> (<i>t</i> 3)	0,001000
Q(t4)	0,25	P(t4)	0,75	f(t4)	0,000037	y(t4)	0,001111
Q(t5)	0,333	<i>P</i> (<i>t</i> 5)	0,666	<i>f</i> (<i>t</i> 5)	0,000000	<i>y</i> (<i>t</i> 5)	0,000000
Q(t6)	0,333	<i>P</i> (<i>t</i> 6)	0,666	<i>f</i> (<i>t</i> 6)	0,000037	<i>y</i> (<i>t</i> 6)	0,001250

2. Газовая цепь движения нитрозных газов (таблицы 4.17-18).

В данной цепи можно выделить $N_0 = 27$ основных параметров.

Таблица 4.17- Полученные данные для газовая цепь движения нитрозных газов

Период	Δt	N(t)	n(t)	$n(t + \Delta t)$
t1 = 0	100	26	1	1
t2 = 100	100	25	2	1
t3 = 200	100	25	2	0
t4 = 300	100	25	2	0
t5 = 400	100	23	4	2
t6 = 500	100	20	7	3

Таблица 4.18 - Рассчитанные значение для газовая цепь движения нитрозных газов

Вероят	ность	Вероятность		Плотность		Интенсивность	
отказа		безотка	зной	отказо	OB	отказов	
		работы					
Q(t1)	0,037	<i>P</i> (<i>t</i> 1)	0,962	<i>f</i> (<i>t</i> 1)	0,000037	<i>y</i> (<i>t</i> 1)	0,000385
Q(t2)	0,074	P(t2)	0,925	f(t2)	0,000000	y(t2)	0,000000
Q(t3)	0,074	P(t3)	0,925	<i>f</i> (<i>t</i> 3)	0,000000	<i>y</i> (<i>t</i> 3)	0,000000
Q(t4)	0,074	P(t4)	0,925	f(t4)	0,000074	<i>y</i> (<i>t</i> 4)	0,000800
Q(t5)	0,148	<i>P</i> (<i>t</i> 5)	0,851	<i>f</i> (<i>t</i> 5)	0,000111	<i>y</i> (<i>t</i> 5)	0,001304
Q(t6)	0,259	<i>P</i> (<i>t</i> 6)	0,740	<i>f</i> (<i>t</i> 6)	0,000037	<i>y</i> (<i>t</i> 6)	0,000500

3. Газовая цепь движения хвостовых газов (таблицы 4.19-20).

В данной цепи можно выделить $N_0 = 16$ основных параметров.

Таблица 4.19 - Полученные данные для газовая цепь движения хвостовых газов

Период	Δt	N(t)	n(t)	$n(t + \Delta t)$
t1 = 0	100	15	1	1
t2 =100	100	15	1	0
t3 =200	100	14	2	1
t4 = 300	100	13	3	1
t5 =400	100	12	4	1
t6 =500	100	12	4	0

Таблица 4.20 - Рассчитанные значение для газовая цепь движения хвостовых газов

Вероят	ТНОСТЬ	Вероятность		Плотность		Интенсивность	
отказа	l	безотка	зной	отказо)B	отказов	
		работы					
Q(t1)	0,062	P(t1)	0,937	f(t1)	0,000000	<i>y</i> (<i>t</i> 1)	0,000000
Q(t2)	0,062	P(t2)	0,937	f(t2)	0,000037	<i>y</i> (<i>t</i> 2)	0,000667
Q(t3)	0,125	P(t3)	0,875	f(t3)	0,000037	<i>y</i> (<i>t</i> 3)	0,000714
Q(t4)	0,187	P(t4)	0,812	f(t4)	0,000037	y(t4)	0,000769
Q(t5)	0,25	<i>P</i> (<i>t</i> 5)	0,75	<i>f</i> (<i>t</i> 5)	0,000000	<i>y</i> (<i>t</i> 5)	0,000000
Q(t6)	0,25	<i>P</i> (<i>t</i> 6)	0,75	<i>f</i> (<i>t</i> 6)	0,000000	y(t6)	0,000000

В ходе выполнения работы за 2 года была произведена оценка вероятности безотказной работы системы производства неконцентрированной азотной кислоты (1 год до внедрения методики и 1 год после).

Были получены следующие вероятности безотказной работы цепей многостадийного производства (таблица 4.21) где $P'_{\rm M\Pi}$ - данные, полученные до

внедрения предложенной методики, $P''_{\rm M\Pi}$ - данные, полученные после внедрения методики.

Таблица 4.21 - Вероятности безотказной работы цепей

	Ц1	Ц2	Ц3	Ц4	Ц5	Ц6	Ц7	Ц8	Ц9
$P'_{ m M\Pi}$	0,99980	0,99850	0,99930	0,99950	0,99971	0,99993	0,99200	0,99960	0,99940
$P_{ m M\Pi}^{\prime\prime}$	0,99982	0,99880	0,99930	0,99954	0,99975	0,99993	0,99270	0,99963	0,99946

Вероятность безотказной работы системы считается по формуле:

$$P_{\mathrm{M}\Pi}(t) = \prod_{i=1}^{9} P_i(t)$$

где $P_i(t)$ — вероятность безотказной работы i-ой цепи технологического процесса. t — временной интервал, за который брались данные. $t=T_R=365$ дней.

Вероятность отказа системы считается по формуле:

$$Q_{\rm M\Pi}(t) = 1 - P_{\rm M\Pi}(t)$$

Используя представленные выше формулы были получены следующие результаты (Таблица 4.22)

 Таблица 4.22 - Результаты оценки увеличения показателя вероятности

 безотказной работы

	Вероятность	Вероятность отказа системы
	безотказной работы	
	системы	
До внедрения	0,9868	0,0132
После внедрения	0,9882	0,0118
Улучшение п	~10,6%	

Таким образом, применение предложенной методики позволило повысить эксплуатационную надежность многостадийного технологического процесса т.е. вероятность безотказной работы многостадийного технологического процесса за период T_R на $\sim 10,6\%$.

ЗАКЛЮЧЕНИЕ

В данной работе была рассмотрена проблема диагностики непрерывных многостадийных производств и предложена новая методика для повышения эксплуатационной надежности непрерывных технологических процессов. Исследование включало теоретическое обоснование методики, разработку алгоритма и его программную реализацию.

В первой главе проведен обзор предметной области и современных диагностических систем. Выявлены их недостатки:

- 1. Отсутствие методов определения точки бифуркации случайных процессов изменения технологических переменных при диагностике стационарных режимов работы ТП.
- 2. Отсутствие современного подхода, основанного на методах искусственного интеллекта по принятию оперативных решений с целью управления эксплуатационной надежностью
- 3. Отсутствуют решения по построению архитектуры специализированной динамической экспертной системы повышения эксплуатационной надежности непрерывных многостадийных технологических процессов.

Основное внимание второй главы уделено выбору и обоснованию методики повышения эксплуатационной надежности технологического производства путем устранения вышеперечисленных недостатков. В главе описаны используемые методы двойного скользящего окна и теории свидетельств. Также приведен анализ технологических переменных производства неконцентрированной азотной кислоты для диагностики и оценки эксплуатационной надежности технологического процесса. Описан подход к формированию базы знаний экспертной системы.

В третьей главе описана архитектура разработанного программного комплекса для реализации предложенной методики. Подробно рассмотрена структура каждого разработанного программного модуля и предоставлены блок-схемы алгоритмов.

Четвертая глава посвящена экспериментальной проверке предложенной методики с использованием разработанного программного обеспечения. Описан подход по моделированию потока данных и приведены расчёты в соответствии с предложенной методики.

Использование предложенной методики показало, что традиционный метод нечетких множеств на первом шаге вычислений исключает не перспективные варианты, что приводит к ошибкам в диагностике. Перераспределения вероятностей вследствие наличия дополнительного свидетельства позволило выявить, что наиболее вероятны гипотезы A_4 и A_6 и вероятность наличия дефекта в стадиях a_1 и a_2 составила $[0,62\%;\ 0,91\%]$, а в стадиях a_2 и a_3 составила $[0,57\%;\ 0,86\%]$ соответственно. На третьем этапе принятия решения с помощью динамической экспертной системы было принято решение о дефекте в стадии a_3 . Использование традиционных методов, в свою очередь, не допускает гипотезу A_3 (т.к. вероятность наличия дефекта в ней составляет менее 6%) и этот вариант исключается, что приводит к ошибке второго рода и значительным затратам по времени на выявление реальной причины критической ситуации.

Была произведена оценка показателей надежности функционирования технологического процесса. Использование предложенной методики позволило улучшить показатель вероятности безотказной работы многостадийного технологического процесса на ~10,6%.

СПИСОК ЛИТЕРАТУРЫ

- Ткалич С. А. Обобщенный алгоритм безаварийного управления технологическими процессами // Вестник Воронежского государственного технического университета. 2009 Т. 5 № 12 С. 209-214.
- 2. Ткалич С. А. Безаварийное управление технологическими процессами: монография / С.А. Ткалич; под ред. д-ра техн. наук, проф. В. Л. Бурковского. Воронеж: Издательство «Научная книга», 2018 152 с.
- 3. Ткалич С. А., Бурковский В. Л. Реализация композиционной модели прогнозирования аварийных ситуаций в промышленных системах безаварийного управления // Системы управления и информационные технологии. 2010 № 2 (40). С. 91-94.
- 4. Ткалич С. А. Интегральный критерий безаварийного управления технологическими процессами // Системы управления и информационные технологии. 2009 № 4.1. С.188-191.
- 5. Tkalich S. A., Kravets O. Ja. Composite Prognostication Model of Emergencies at the Hazardous Industrial Enterprises // International Journal on Information Technologies and Security. 2019, no. 2 (vol. 11), pp. 29-34.
- 6. Ткалич С. А., Васильев Е. М. Идентификация состояния стохастических систем // Электротехнические комплексы и системы управления. 2008 № 1 С. 44-46.
- 7. Ткалич С. А. Определение доминирующих параметров риска в системах прогнозирования аварийных ситуаций // Вестник Воронежского государственного технического университета. 2010 Т. 6 № 1 С. 81-84.
- 8. Ткалич С. А. Анализ критических параметров аварийных ситуаций технологических процессов // Электротехнические комплексы и системы управления. 2011 № 2 С. 69-71.

- Ткалич С. А. Алгоритм расчета интегрального критерия безаварийного управления // Системы управления и информационные технологии. 2011 № 1.1 (43). С. 176-179.
- 10. Состояние и перспективы развития инновационных технологий в России и за рубежом: материалы IX Междунар. науч.-практ. конф. (Чебоксары, 27–28 января 2024 г.): материалы конференции. Чебоксары: ЧГУ им. И.Н. Ульянова, 2024. 156 с. ISBN 978-5-7677-3791-8.
- 11. Кафаров В.В. Принципы создания безотходных химических производств. М. Химия, 1982. 288 с.
- 12.Обновленский, П.А. Системы защиты потенциально опасных процессов химической технологии / П.А. Обновленский, Л.А. Мусяков, А.В. Чельцов. Л.: М.: Химия, 1978. 224 с.
- 13. Надежность технологического оборудования химических, нефтегазохимических и нефтегазоперерабатывающих производств: учеб. пособие / Н. И. Богаутдинов [и др.]; Федеральное агентство по образованию, Гос. образовательное учреждение высш. проф. образования "Казанский гос. технологический ун-т". Казань: Изд-во Казанского гос. технологического ун-та, 2006. 167 с.: ил., табл.: 21 см.; ISBN 5-7882-0316-3.
- 14.Перлов, Е.И. Оптимизация производства азотной кислоты / Е.И. Перлов, В.С. Багдасарян. М.: Химия, 1983. 208 с.
- 15. Целыковский, В.П. Комбинированные методы управления и защиты потенциально опасных процессов химических производств / В.П. Целыковский, Б.В. Палюх // Методы кибернетики химико-технологических процессов: Всес. научн. конф., М., 1989.С.120 127
- 16. Бакасов, С.Р. Управление технологической безопасностью процесса селективной очистки газов на основе нечетких импульсных моделей / С.Р. Бакасов: Дис. ... к.т.н.: 05.13.06... Тверь, 2019. 195 с.

- 17.Жолен, Л. Прикладной интервальный анализ / Л. Жолен, М. Кифер, О. Дидри, Э. Вальтер; [пер. с франц.]. 2-е изд., испр. Москва: Издательство "Интервальный анализ и его приложения", 2007. 468 с. ISBN 5-93972-585-6.
- 18. Мозгалевский А.В., Гаскаров Д.В. Техническая диагностика. М.: Высшая школа, 1975. 207 с.
- 19. Комиссаров, Ю. А. Химическая технология: многокомпонентная ректификация: учеб. Пособие для академического бакалавриата / Ю. А. Комиссаров, К. Ш. Дам. 2-е изд., перераб. и доп. М. : Издательство Юрайт, 2019. 255 с. (Серия : Бакалавр. Академический курс). ISBN 978-5-534-05626-6.
- 20. Кафаров В.В., Мешалкин В.П., Грун Г., Нойманн В. Обеспечение и методы оптимизации надежности химических и нефтеперерабатывающих производств. М: Химия, 1987. 272 с.
- 21. Алиев Р.А. и др. Производственные системы с искусственным интеллектом. М.: Радио и связь, 1990. 264 с.
- 22.Химмельблау Д. Обнаружение и диагностика неполадок в химических и нефтехимических процессах: Пер. с англ.- Л.: Химия, 1983. 352 с.
- 23.Палюх Б.В. Основы построения и разработки автоматизированной системы управления эксплуатационной надежностью химических производств: Дис... докт. техн. наук: 05,13.07.- М., 1991.- 360 с.
- 24. Кафаров В.В., Перов В.Л., Мешалкин В.П. Принципы математического моделирования химико-технологических систем. М.: Химия, 1974. 344 с.
- 25. Балакирев В.С., Володин В.М., Цирлин А.М. Оптимальное управление процессами химической технологии. М.: Химия, 1978. 384 с.

- 26.Ihida Y., Adachi N., Tokumary H. A Topologikal Approach to Failure Diagnosis of Large-Scale Systems // IEEE Trans. Syst., Man and Cybern., 1985.- Vol. 15.- P. 327-333.
- 27. Дубравский Н.Г., Мокроус М. Параметрические методы диагностического контроля состояния авиадвигателей / Труды ЦИАМ. М., 1981. М 964. 29 с.
- 28. Черкез А.Я. Инженерные расчеты газотурбинных двигателей методом малых отклонений. М.; Машиностроение, 1965. 355 с.
- 29. Кассандрова О.Н., Лебедев В.В. Обработка результатов наблюдений. М.: Наука, 1970. 104 с.
- 30. Алефельд Г., Херцбергер Ю. Введение в интервальные вычисления. М.: Мир, 1987. 360 с.
- 31. Калмыков С.А., Шокин Ю.И., Юлдашев 3.х. Методы интервального анализа. Новосибирск: Наука, 1986. 224 с.
- 32. Шарий Д.С. Конечномерный интервальный анализ. Новосибирск: ХҮZ (2019)
- 33. Кафаров В.В., Палюх Б.В., Перов В.Л. Решение задачи технической диагностики непрерывного производства с помощью интервального анализа // Докл. АН СССР.1990. Т.311, М 3. С.677-680
- 34. Скибицкий, Н. В. Интервальные методы в задачах оптимального управления / Н. В. Скибицкий // Заводская лаборатория. Диагностика материалов. 2022. Т. 88, № 5. С. 71-82. DOI 10.26896/1028-6861-2022-88-5-71-82. EDN PAEEQE.
- 35.Khodashahri N.G, Sarabi M.H. Decision support system (DSS) // Singaporean journal of business economics and management studies. 2013. №6 C 94-102.
- 36.Белоусова, Т. И. Информационные системы и их роль в анализе деятельности современных предприятий / Т. И. Белоусова // Совершенствование моделей взаимоотношений института таможенного дела и предпринимательства в России: сборник научных работ преподавателей и магистрантов / Федеральная

- таможенная служба, госуд. казенное образовательное учреждение высшего проф. образования «Российская таможенная академия», Владивостокский филиал; под редакцией В.А. Останина. Владивосток: Владивостокский филиал государственного казенного образовательного учреждения высшего профессионального образования "Российская таможенная академия", 2013. С. 15-20. EDN ТҮКҮХЈ.
- 37. Ткалич С. А. Гибридная методика практической реализации системы принятия решений по приоритетному регулированию // Известия ЮФУ. Технические науки. 2021
- 38. Tripathi K.P. Decision support system is a tool for making better decisions in the organization // Indian Journal of Computer Science and Engineering. 2017. № 21– C 112-117.
- 39.Прокопенко Н.Ю. Системы поддержки принятия решений на базе Deductor Studio Academic 5.3: учебное пособие / Н.Ю. Прокопенко Нижний Новгород: ННГАСУ, 2017. 188 с.
- 40.Лабабиди М. Р. Система поддержки принятия решений (СППР) как инструмент принятия эффективных управленческих решений на промышленных предприятиях / М. Р. Лабабиди, Н. Р. Кельчевская. Текст: электронный // Весенние дни науки: сборник докладов Международной конференции студентов и молодых ученых (Екатеринбург, 21–23 апреля 2022 г.). Екатеринбург: УрФУ, 2022. С. 377-381.
- 41.Alyoubi B.A. Decision support system and knowledge-based strategic management // ELSEVIER. 2015. № 65 C 278-284.
- 42. Рыбак В.А. Шокр Ахмад Аналитический обзор и сравнение существующих технологий поддержки принятия решений // Системный анализ и прикладная информатика. Минск, 2016.

- 43.Васильев, В. И. Экспертные системы: управление эксплуатацией сложных технических объектов: / В. И. Васильев, С. В. Жернаков; В.И. Васильев, С.В. Жернаков; М-во образования Рос. Федерации, Уфим. гос. авиац. техн. ун-т. Уфа: Уфим. гос. авиац. техн. ун-т, 2003. 105 с. ISBN 5-86911-416-0. EDN QMMQFN.
- 44.Искусственный интеллект. Базы знаний и экспертные системы / А.М. Дворянкин, А.В. Кизим, И.Г. Жукова, М.Б. Сипливая; М-во образования Рос. Федерации, Волгогр. гос. техн. ун-т. Волгоград : Политехник, 2003. 139 с. ISBN 5-230-04047-5. EDN QMMRBV.
- 45.Барыкин, С. Г. Системы искусственного интеллекта / С. Г. Барыкин, Н. В. Плотникова; С. Г. Барыкин, Н. В. Плотникова; М-во образования и науки Российской Федерации, Федеральное агентство по образованию, Южно-Уральский гос. ун-т, Каф. "Системы упр.". Челябинск: Изд-во ЮУрГУ, 2004. 83 с. EDN QMPZKL.
- 46. Чуркин, В. И. Экспертные системы / В. И. Чуркин; Федеральное агентство по образованию, Санкт-Петербургский государственный политехнический университет. Москва: Санкт-Петербургский государственный политехнический университет, 2005. 67 с. EDN QMQDRF.
- 47.Попов Э.В., Фоминых И.Б., Кисель Е.Б., Шапот М.Д. Статические и динамические экспертные системы: учебное пособие М.: Финансы и статистика, 1996 320 с.
- 48. Рыбина Г. В. Теория и технология построения интегрированных экспертных систем. Москва: Издательство «Научтехлитиздат», 2008 482 с.
- 49.Попов Э.В. Экспертные системы. М.: Наука, 1987. 288 с.
- 50. Экспертные системы. Принципы работы и примеры / Под ред. Р. Форсайта: Пер. с англ.- М.: Радио и СВЯЗЬ, 1987. С. 22-24,

- 51.Построение экспертных систем / Под ред. Ф. Хейеса-Рота, Д. Уотермана, Д. Лената: Пер. с англ.- М.:Мир, 1987.- 441 с.
- 52. Элти Дж., Кумбс М. Экспертные системы: Концепции и примеры: Пер. с англ.-М.: Финансы и статистика, 1987. - 191 с.
- 53. Androw P.K. Fault Diagnosis Using Intellegent Knowledge Based Systems // Chem. Eng. Res. and Des., 1985.- Vol. 63.- P.368- 372.
- 54.Rowan D.A. Using an Expert Systems for Fault Diagnosis // Chem. Eng., 1987. Vol. 34. P.160,162,164.
- 55.Палюх Б.В., Кемайкин В.К. Надежность информационных систем: учебное пособие Тверь: ТГТУ 2022 155 с.
- 56.Rojaram N.S. Expert Systems: Cutting Edge of Artificial Intelligence // Robotics Eng., 1986. Vol.8. P, 16-20.
- 57. Уотермен Д. Руководство по экспертным системам: Пер. с англ.- М.: Мир, 1989. 388 с.
- 58.Улучшенный алгоритм диагностики повреждений установок для химических процессов / ГПНТБ. -N 87/51227. -Nep.cr. ShiozakiJ. e.a. изжурн. Comp. and Chen. Eng. 1985. -Vol. 9. p, 285-293.
- 59. Scheneeweies F.G. Fault-Tree Analysis Using a Binary Decision Tree // IEEE Trans. Reliab., 1985. Vol, 34. -P.453-457.
- 60.Kumamoto H., Ikenchi K., Inoe K., Henley E.J. Application of Expert Systems Techniques to Fault Diagnosis // Chem. Eng. J., 1984, Vol. 20.- P, 1-9,
- 61.Подход к разработке экспертных систем Технической диагностики / ГПНТБ. N 88/26972. -Пер. ст. Sgurev V. e.a. изжурн. Comp. and Artif. Intel. 1986.- Vol. 5.- P. 103-115.
- 62.Kramer M.A., Palowitch B.L. A Rule-Based Approach to Fault Diagnosis Using the Signed Directed Graph // AIChE J., 1987. -Vol. 33. BP. 1067-1078.

- 63.Finch F.E., Kramer M.A. Narrowing Diagnostic Focus Using Functional Decomposition // AIChE J., 1988. Vol. 34. P.25- 36.
- 64. Курлина В.В. и др. Диагностические модели аналитических информационных подсистем в АСУ ТП // Системы и средства автоматизации потенциально опасных процессов химической технологии: Межвуз. сб. научн. тр.- Л.: ЛТИ им. Ленсовета, 1986. 183 с.
- 65.Перов В.Л., Палюх Б.В., Куперман В.Г. Управление эксплуатационной надежностью турбокомпрессорного оборудования с использованием элементов экспертных систем // Проблемы разработки программнотехнического обеспечения САПР: С6. науч. трудов. Тверь: НПО "Центрпрограммсистем", 1990. С. 66-82.
- 66.Построение экспертных систем / Под ред. Хейеса-Рота, Д. Уотермана, Д. Лената: Пер. с англ.- М.:Мир, 1987.- 441 с.
- 67. Методика повышения эксплуатационной надежности непрерывных многостадийных технологических процессов. Меркурьев С.А., Палюх Б.В., Ветров А.Н., / 2024 Научно-технический вестник Поволжья. 2024 №6. С. 171-174.
- 68. Технологический регламент отделения неконцентрированной азотной кислоты. М.: Стандартинформ, 2010. 360с.
- 69. Комиссаров, Ю. А. Химико-технологические процессы: учебник и практикум для вузов / Ю. А. Комиссаров, М. Б. Глебов, Л. С. Гордеев, Д. П. Вент. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 340 с. (Высшее образование). ISBN 978-5-534-09169-4.
- 70. Кафаров, В. В. Математическое моделирование основных процессов химических производств: учебное пособие для вузов / В. В. Кафаров, М. Б. Глебов. Москва: Юрайт, 2022. 399 с. (Образовательная платформа Юрайт). ISBN 978-5-534-07524-3.

- 71. Грин, Дон В. Perry's Chemical Engineers' Handbook / Дон В. Грин, Мэрили 3. Саутард. 9-е изд. McGraw-Hill Co, 2018. 2272 с. ISBN 0-07-142294-3.
- 72. Технологический регламент отделения неконцентрированной азотной кислоты по схеме УКЛ-7-71/76.- М.: Стандартинформ, ЗАО "Кодекс", 2010.- 361 с.
- 73.Ветров, А. Н. Детектирование бифуркаций многомерных случайных процессов в динамических экспертных системах / А. Н. Ветров, А. А. Мальков, Б. В. Палюх // Двадцать первая Национальная конференция по искусственному интеллекту с международным участием (КИИ-2023): Труды конференции. В 2-х томах, Смоленск, 16–20 октября 2023 года. Смоленск: Принт-Экспресс, 2023. С. 173-182. EDN CUKZTZ.
- 74. Vetrov, A. N. Bifurcation Detections of Multidimensional Random Processes in Dynamic Expert Systems / A. N. Vetrov, A. A. Malkov, B. V. Paliukh // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2024. Vol. 34, No. 3. P. 751-756. DOI 10.1134/S1054661824700627. EDN CREMCB.
- 75.Methods for Forecasting Critical States of the Technological Process in the Evolutionary Management of Continuous Multi-Stage Production / B. Palyukh, S. Merkuryev, A. Vetrov [et al.] // Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, Moscow, 26–28 января 2021 года. Moscow, 2021. P. 2195-2201. DOI 10.1109/ElConRus51938.2021.9396111. EDN JOZNNV.
- 76.Shabanov B., Sotnikov A., Palyukh B., Vetrov A., Alexandrova D. Expert System for Managing Policy of Technological Security in Uncertainty Conditions: Architectural, Algorithmic, and Computing Aspects // Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) January 28-30, 2019

- 77. Некоркин, В. И. Лекции по основам теории колебаний: учебное пособие: для студентов ННГУ, специализирующихся в области радиофизики, прикладной математики и математического регулирования / В. И. Некоркин; В. И. Некоркин; М-во образования и науки Российской Федерации, Нижегородский гос. ун-т им. Н. И. Лобачевского, Нац. исслед. ун-т. Нижний Новгород: Издво Нижегородского госуниверситета, 2012. 310 с. ISBN 978-5-91326-230-1. EDN QKAFQR.
- 78. Мужиков, Г. П. Анализ динамических систем с использованием элементов теории бифуркаций / Г. П. Мужиков, М. А. Гилев // Современные тенденции развития и перспективы внедрения инновационных технологий в машиностроении, образовании и экономике. 2017. Т. 3, № 1(2). С. 35-37. EDN YSYLMF.
- 79. Чесалов А.Ю., Палюх Б.В. Современные подходы к созданию автоматизированных систем прогнозируемого обслуживания многостадийных технологических процессов в промышленности // XXVII Российская научная конференция "Инжиниринг предприятий и управление знаниями (BG&EP-2024)": сборник научных трудов (Москва, "РЭУ им. Г.В. Плеханова", 28-29 ноября 2024 г.). Москва, 2024. Т. 1. С. 351-357
- 80. Голенков В.В., Кобринский Б.А., Палюх Б.В. Летние школы РАИИ по искусственному интеллекту // Всероссийская конференция "Поспеловские чтения: искусственный интеллект проблемы и перспективы". (Москва, НИУ "МЭИ", 19-20 декабря 2024 г.). Труды конференции. Смоленск. Универсум, 2024. С. 163-169.
- 81. Меркурьев С.А., Палюх Б.В., Ветров А.Н. Подход к решению вопроса обнаружения аномалий в динамических экспертных системах // В сборнике: Современные технологии и инновации. Материалы V Всероссийской научнопрактической конференции. Тверь, 2021. С. 136-142.

- 82.Палюх Б.В., Ветров А.Н., Мальков А.А. Методы и средства обработки данных системе управления эволюцией непрерывных потоковых В многостадийных производств // Сборник трудов 18-й Национальной конференции по искусственному интеллекту с международным участием КИИ-2020 / под ред. В.В. Борисова, О.П. Кузнецова. М.: МФТИ, 2020. С. 70-77.
- 83.Dempster A.P., "A generalization of Bayesian inference," Classic works of the Dempster-Shafer Theory of Belief Functions, pp. 73–104, 2008.
- 84. Shafer G. A Mathematical Theory of Evidence, Princeton University Press, 1976.
- 85. Yager R., Liping L. Classic Works of the Dempster-Shafer Theory of Belief Functions, London: Springer. 2010
- 86.Палюх Б.В., Ветров А.Н., Егерева И.А. Архитектура интеллектуальной системы оптимального управления эволюцией многостадийных процессов в нечеткой динамической среде // Программные продукты и системы. 2017 № 4 С. 619-624.
- 87. Лепский А.Е. Об оценивании конфликта и уменьшения незнания в теории Демпстера-Шейфера // VII-я Международная научно-практическая конференция "Интегрированные модели и мягкие вычисления в искусственном интеллекте". (20-22 мая 2013 г., Коломна, Россия). Т. 1 М.: Физматлит, 2013 С. 436-448.
- 88.Палюх Б.В., Иванов В.К., Демонстратор программной платформы для совместного использования алгоритмов теории свидетельств и нейронных сетей в нечетких системах // Программные продукты и системы. 2021.
- 89.Иванов, В. К. Применение теории свидетельств для обучения нечетких нейронных сетей ANFIS/TSK в диагностических системах / В. К. Иванов, Б. В. Палюх // Двадцатая Национальная конференция по искусственному интеллекту с международным участием, КИИ-2022: Труды конференции. В 2-х

- томах, Москва, 21–23 декабря 2022 года. Том 2. Москва: Национальный исследовательский университет "МЭИ", 2022. С. 27-38. EDN JFHUHF.
- 90. Classic Works of the Dempster-Shafer Theory of Belief Functions / eds. Ronald R. Yager, Liping Liu. Berlin: Springer, 2008. 806 p.
- 91.Юрин А. Ю., Грищенко М.А. Редактор баз знаний в формате CLIPS // Программные продукты и системы, 2012
- 92. Старцева Е.Б. Этапы построения модульной структуры базы знаний экспертной системы на основе системного подхода // Вестник Уфимского государственного авиационного технического университета, 2006
- 93. Куликов, Г. Г. Автоматизированное проектирование информационноуправляющих систем. Проектирование экспертных систем на основе системного моделирования: монография / Г. Г. Куликов, А. В. Речкалов, Л. Р. Черняховская, А. Н. Набатов, Е. Б. Старцева, Н. О. Никулина. Уфа: Изд. Уфимск. гос. авиац. техн. ун-та, 1999. 224 с.
- 94. Частиков А.П., Гаврилова Т.А., Белов Д.Л. Разработка экспертных систем. Среда CLIPS. СПб: БХВ-Петербург, 2003. 608 с.
- 95.Николайчук О.А., Павлов А.И., Юрин А.Ю. Компонентный подход: модуль продукционной экспертной системы // Программные продукты и системы. 2010. № 3. С. 41–44
- 96.Берман А.Ф., Николайчук О.А., Юрин А.Ю., Павлов Н.Ю. Автоматизированное построение деревьев отказов и событий на основе модели динамики технического состояния и методов искусственного интеллекта // Проблемы безопасности и чрезвычайных ситуаций. 2011. № 1. С. 40–52.
- 97.Б.В. Палюх, А.Н. Ветров, А.А. Мальков, Д.С. Александрова. Экспертные системы для управления эволюцией непрерывных многостадийных производственных процессов в режиме реального времени // Вестник

- Тверского государственного технического университета. Серия "Технические науки". 2020. № 2 (6). С. 79-87.
- 98. Александрова, Д. С. Алгоритмические и вычислительные аспекты построения экспертной системы управления политикой технологической безопасности многостадийного непрерывного производства в условиях неопределенности / Д. С. Александрова, А. Н. Ветров, Б. В. Палюх // Семнадцатая Национальная конференция по искусственному интеллекту с международным участием. КИИ-2019: Сборник научных трудов: в 2-х томах, Ульяновск, 21–25 октября 2019 года. Том 1. Ульяновск: Ульяновский государственный технический университет, 2019. С. 5-13. EDN LXMUFR.
- 99. Джарратано, Д. Экспертные системы: принципы разработки и программирование / Д. Джарратано; Джозеф Джарратано, Гари Райли; [пер. с англ. и ред. К. А. Птицына]. 4-е изд.. Москва [и др.]: Вильямс, 2007. ISBN 978-5-8459-1156-8. EDN QMQTDD.
- 100.Дородных, Н. О. Автоматизированное создание продукционных баз знаний на основе деревьев событий / Н. О. Дородных, О. А. Николайчук, А. Ю. Юрин // Информационные и математические технологии в науке и управлении. 2017. № 2(6). С. 30-43. EDN ZIAHFJ.
- 101. Чувиков, Д. А. Сравнительный анализ инструментальных сред для разработки экспертных систем в различных предметных областях / Д. А. Чувиков, А. О. Петерсон // Промышленные АСУ и контроллеры. 2016. № 8. С. 20-27. EDN WMIKLL.
- 102. Катаев, В. А. Разработка экспертных систем в среде multistudio / В. А. Катаев // Открытые семантические технологии проектирования интеллектуальных систем. 2012. № 2. С. 207-212. EDN YUCRFC.
- 103. Программная реализация диагностики непрерывных многостадийных производств с использованием динамической экспертной системы. Меркурьев

- С.А., Палюх Б.В., Ветров А.Н., / 2024 Программные продукты и системы. 2024 №4. С. 561-566
- 104. Лисяк, В. В. Разработка информационных систем / В. В. Лисяк. Ростов-на-Дону - Таганрог: Южный федеральный университет, 2019. — 96 с. — ISBN 978-5-9275-3168-4. — EDN WKSOSQ.
- 105. Гефан, Г. Д. Марковские процессы и системы массового обслуживания / Г. Д. Гефан. Иркутск: Иркутский государственный университет путей сообщения, 2009. 75 с. EDN VAAANZ.
- 106. Колокольчиков, А. В. Цепи Маркова. Системы массового обслуживания: учебное пособие / А. В. Колокольчиков ; Иркутский национальный исследовательский технический университет. Иркутск: Иркутский национальный исследовательский технический университет, 2008. 68 с. EDN UWEELD.

ПРИЛОЖЕНИЯ

Приложение А. Акт об использовании результатов работы

СОГЛАСОВАНО

УТВЕРЖДАЮ

Проректор по научной и

инновационной деятельности

АО Н∕АК «Азот»

mo in mic wisoin

Директор по производству

Зайцев А.Н.

_202<u> ²/</u>г.

Артемьев А.А.

_202🖊 г.

AKT

Об использовании результатов кандидатской диссертационной работы Меркурьева Сергея Алексеевича

«Повышение эксплуатационной надежности непрерывных технологических процессов с использованием динамической экспертной системы"

Комиссия в составе: со стороны Акционерного общества Новомосковская акционерная компания «Азот» начальник цеха ЦР ТО КИПиА Улыбышев М.Ю. и со стороны Тверского государственного технического университета заведующий кафедрой «Информационных систем» д.т.н., проф. Палюх Б.В., аспирант кафедры «Информационных систем» Меркурьева С.А.

Составили настоящий акт о том, что в АО НАК «Азот» внедрены результаты диссертационной работы Меркурьева С.А. "Повышение эксплуатационной надежности непрерывных технологических процессов с использованием динамической экспертной системы" представленной на соискание ученой степени кандидата технических наук:

1) Алгоритм обнаружения аномалий и определения момента бифуркации на основе метода двойного скользящего окна

- 2) Алгоритм формирования гипотез о причинах предаварийных состояний с помощью функции доверия
- 3) Алгоритм принятия решений с использованием динамической экспертной системы

Использование указанных результатов позволяет:

- 1) Сократить время, затрачиваемое на принятие решений относительно состояния технологического процесса
- 2) Выявить дефект технологического процесса и определить способ его устранения
- Сократить ошибки обслуживающего персонала при принятии диагностических и управленческих решений в условиях диагностической и экспертной информации.
- 4) Принимать научно-обоснованные решения относительно состояния технологического процесса.

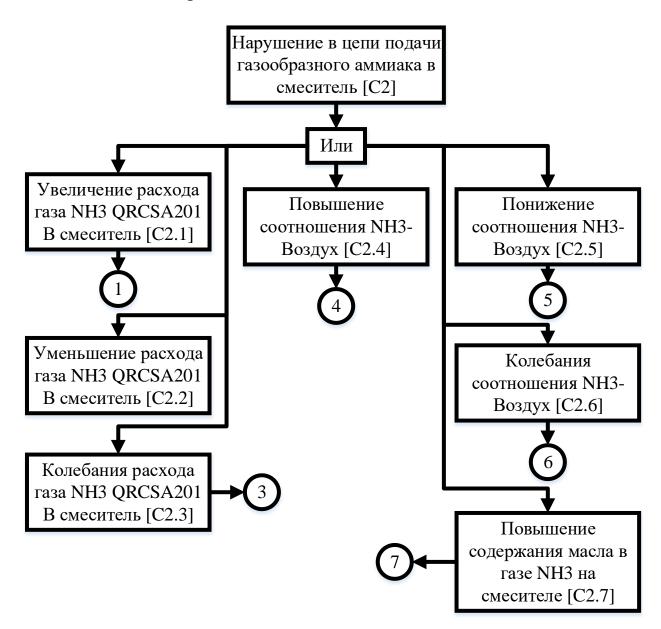
Представители АО НАК «Азот»

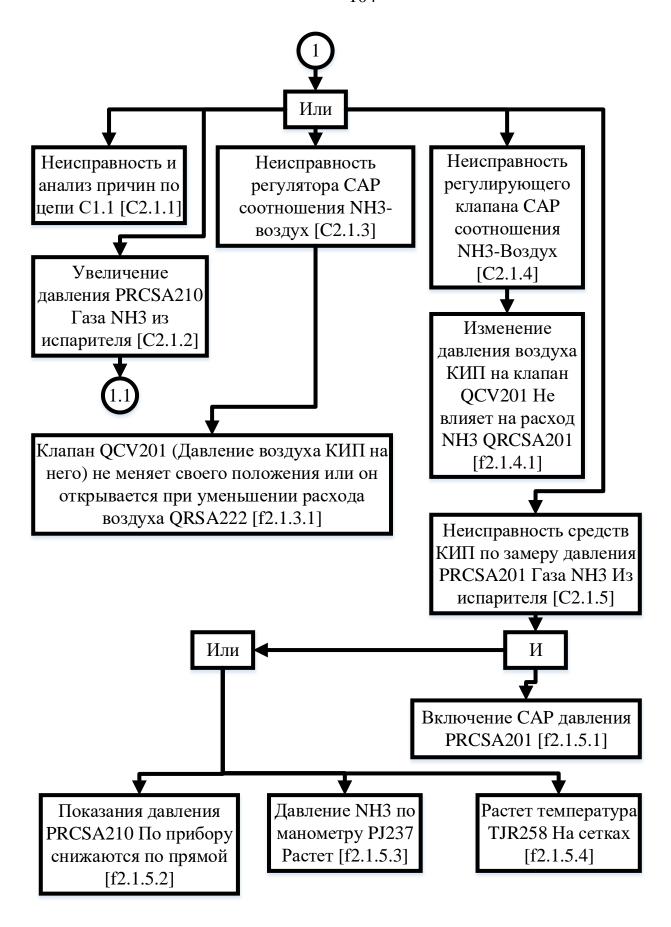
Начальник цеха ЦР ТО КИПиА

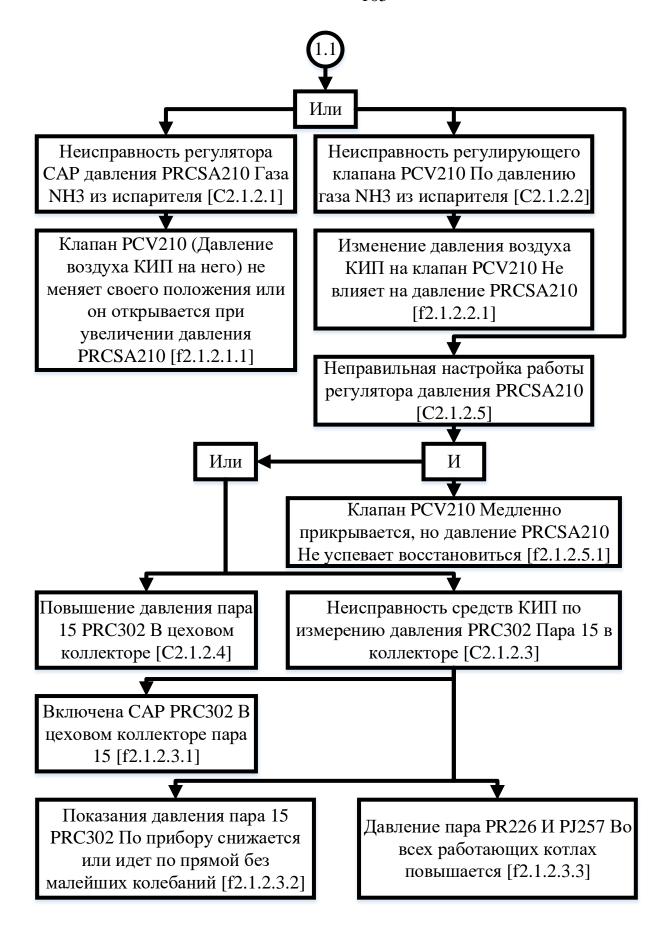
Улыбышев М.Ю.

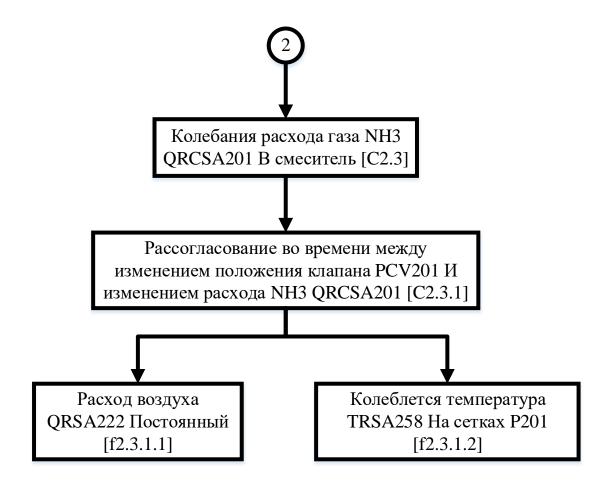
Представители ТГТУ

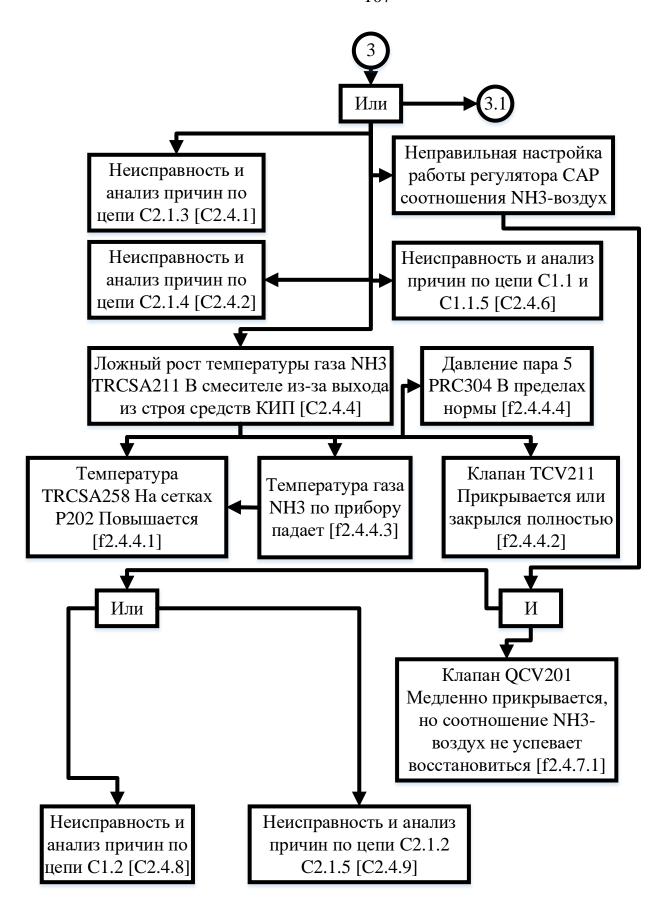
Заведующий кафедрой «ИС»

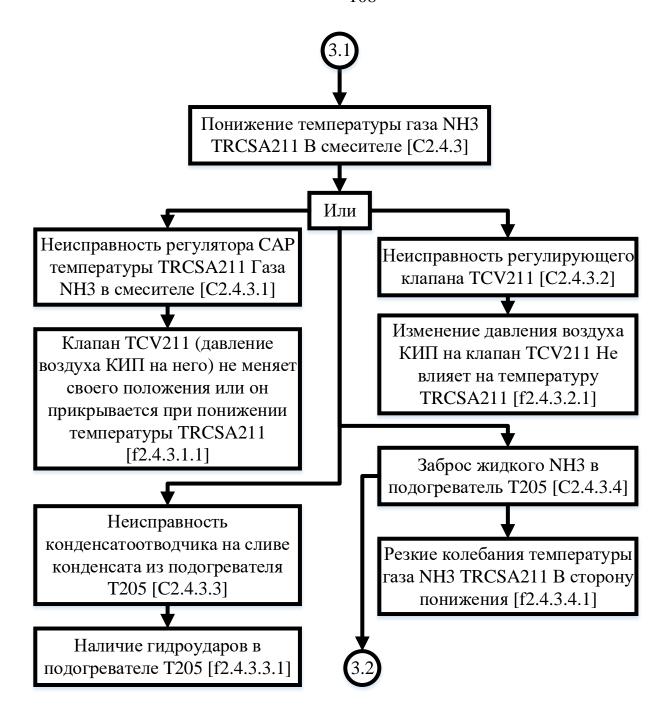

д.т.н., проф. Налюх Б.В.

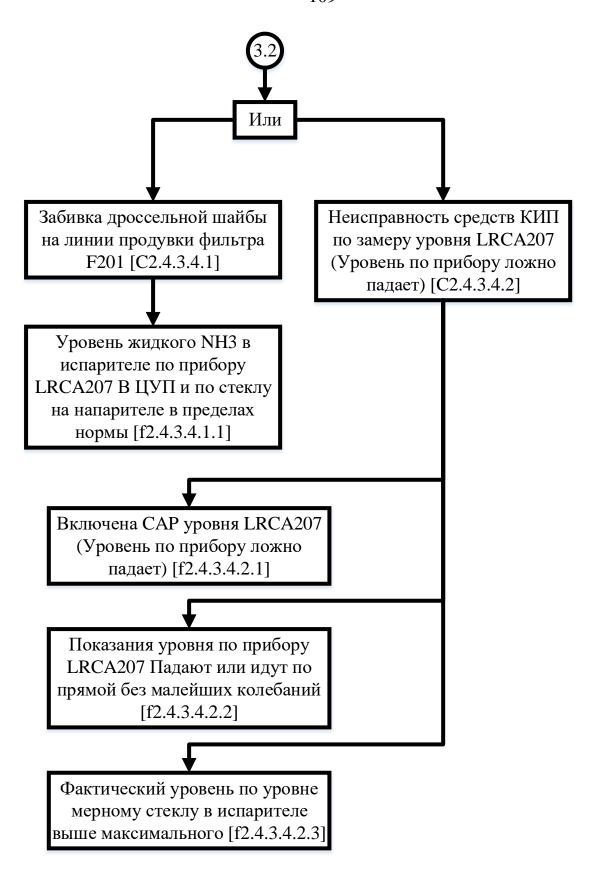

Аспирант кафедры «ИС»


Меркурьева С.А.

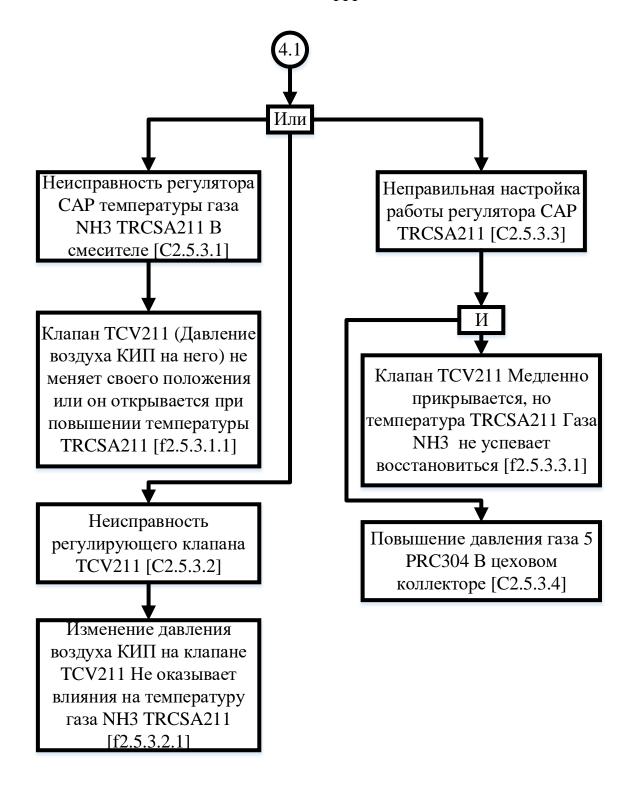

Приложение Б. Деревья отказов

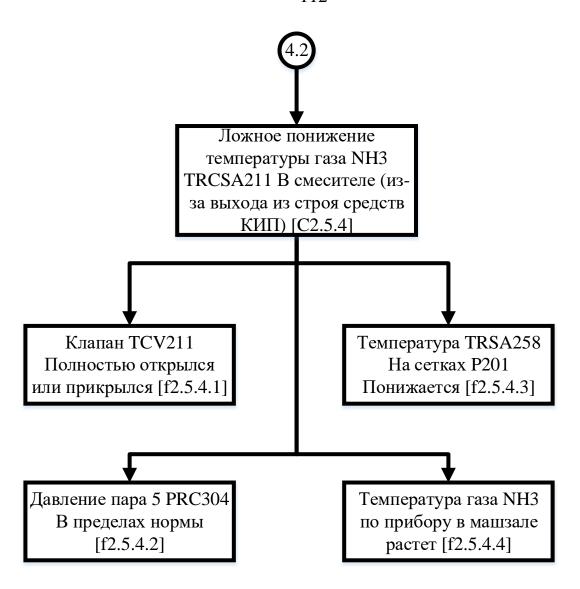

Дерево отказов в цепи подачи аммиака

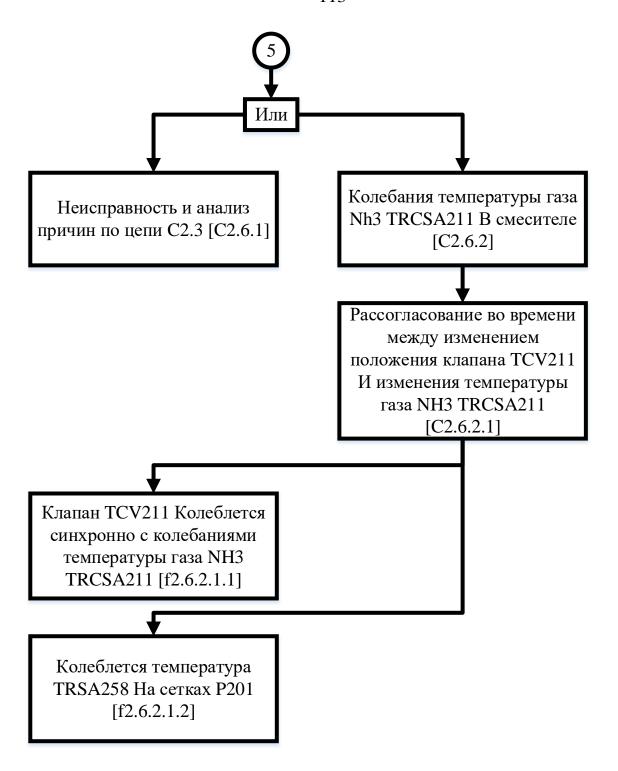


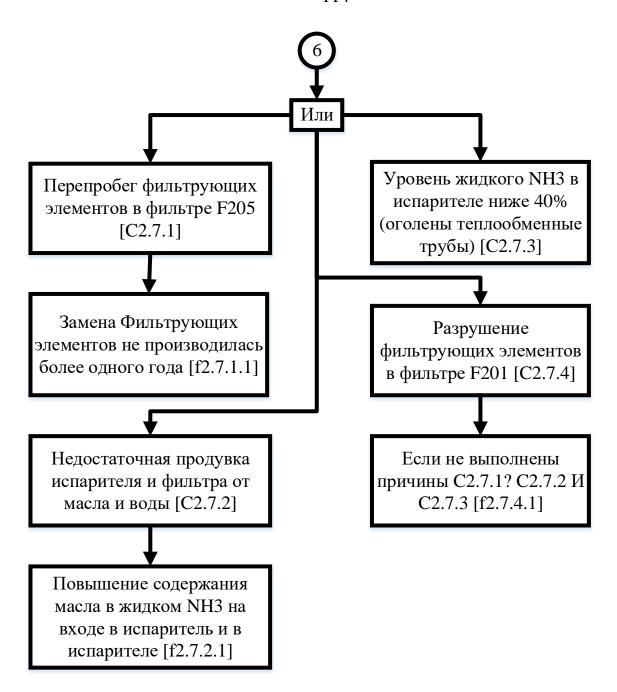


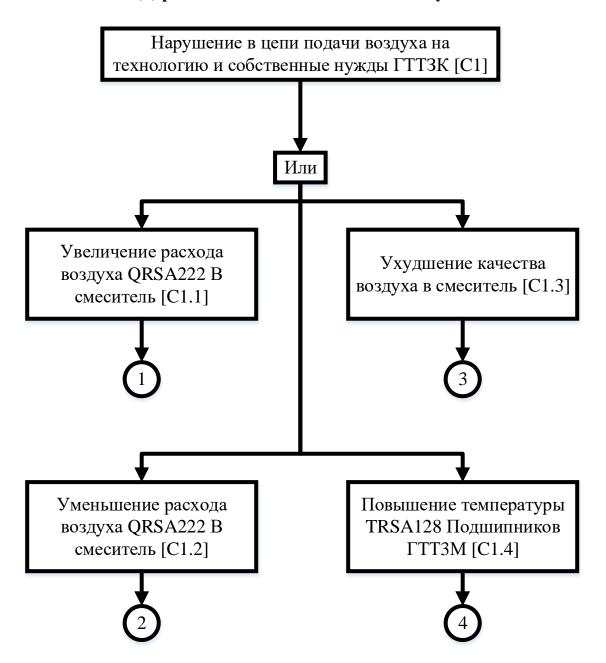


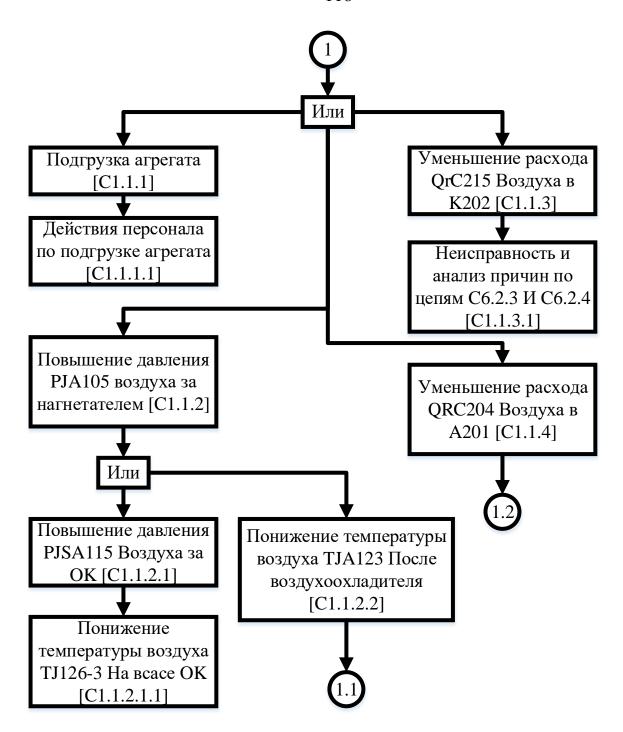


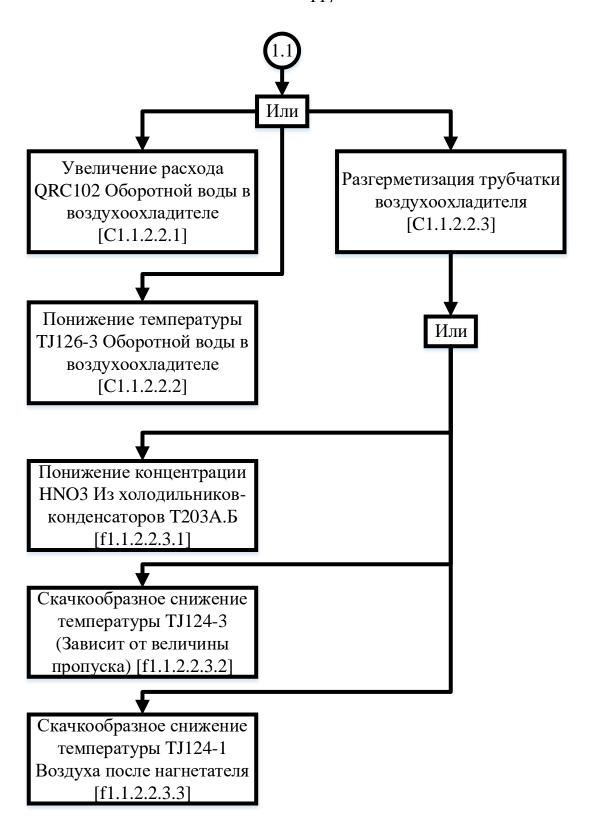


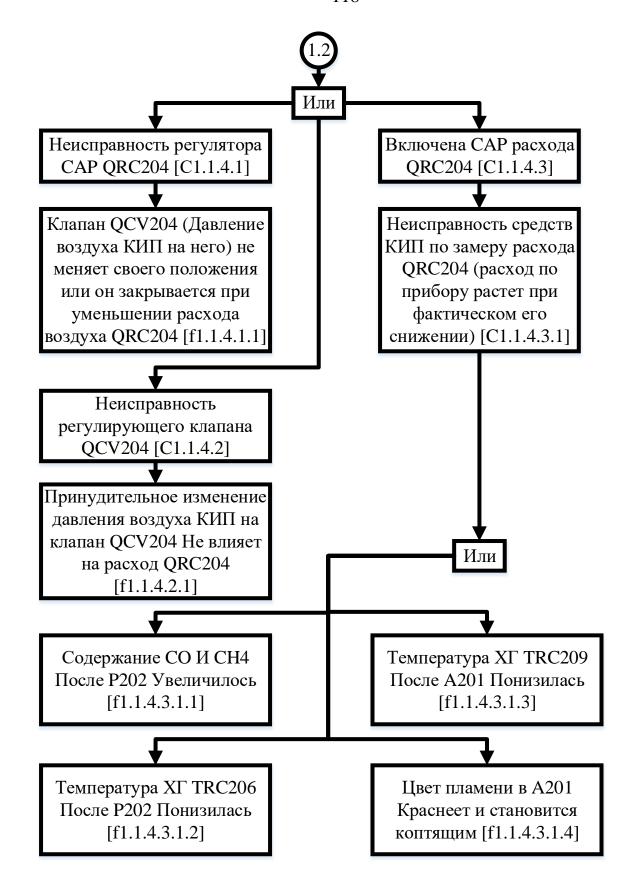


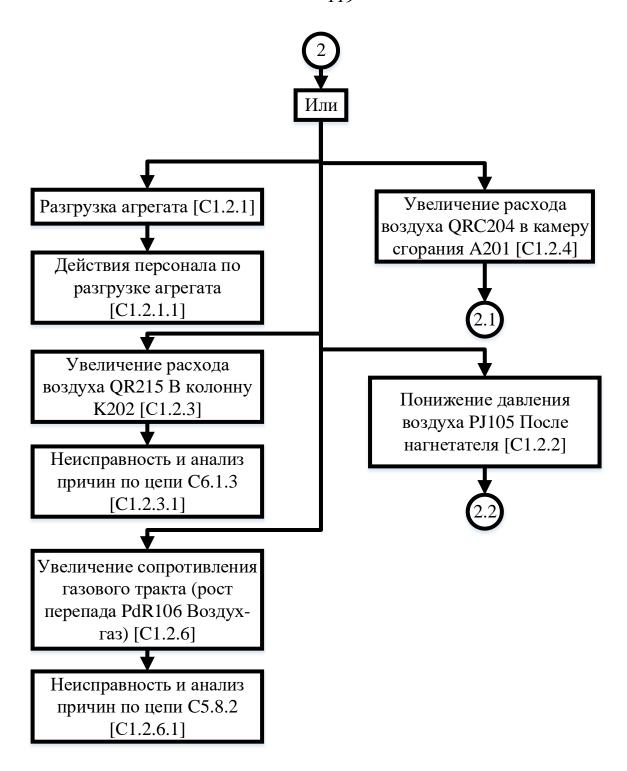


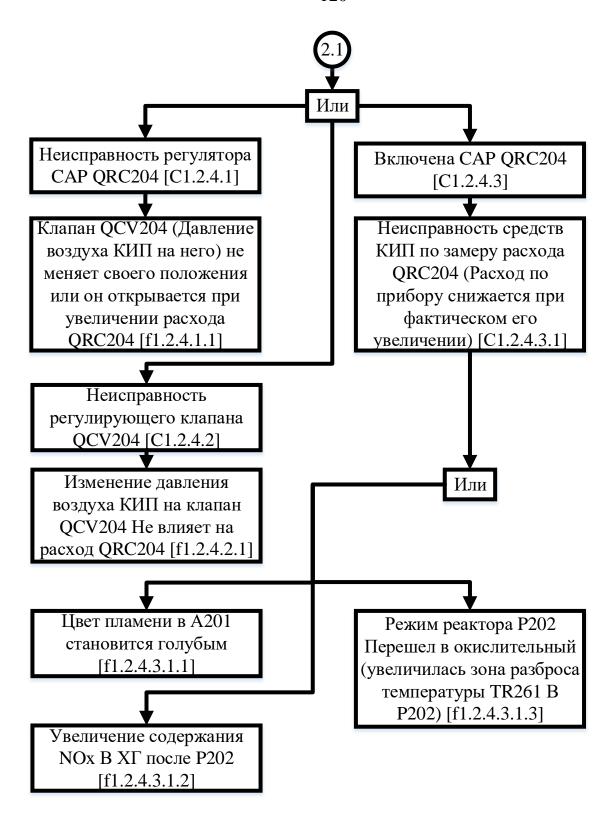


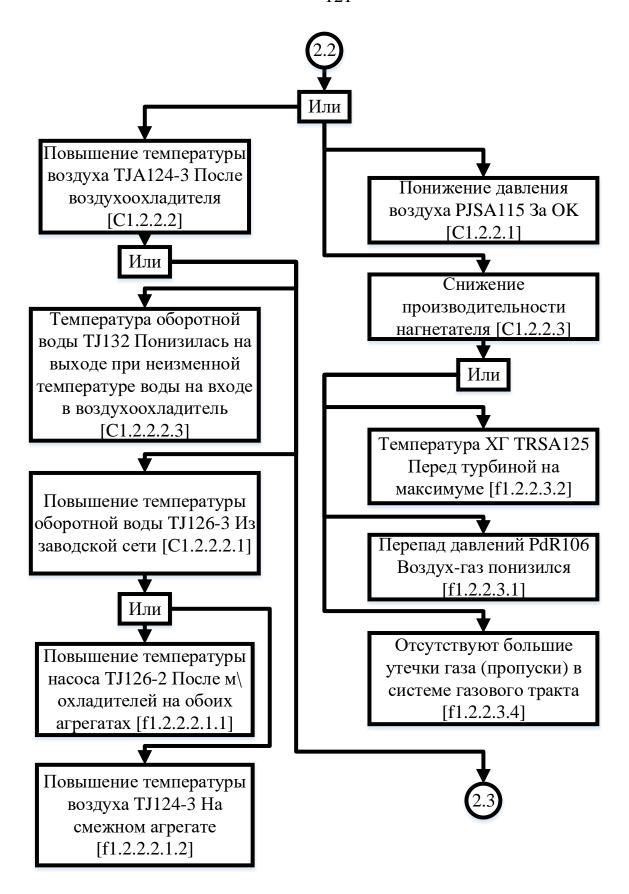


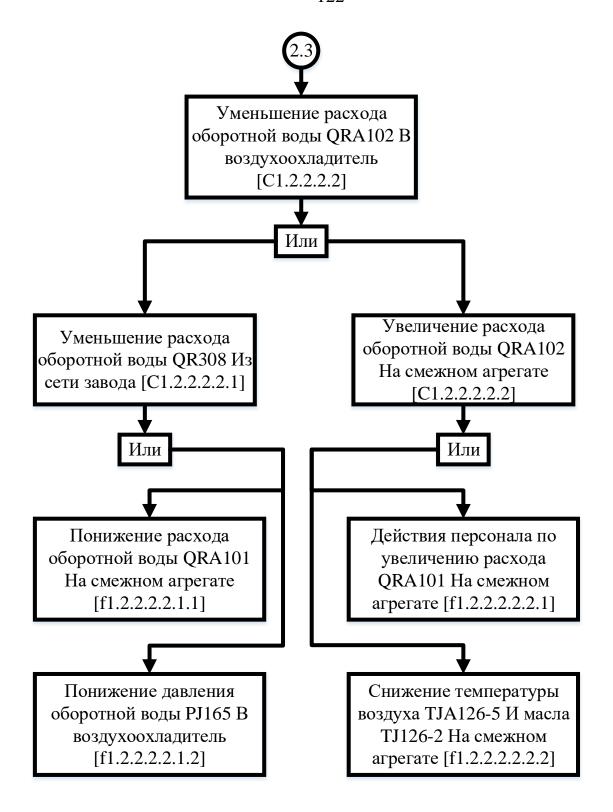


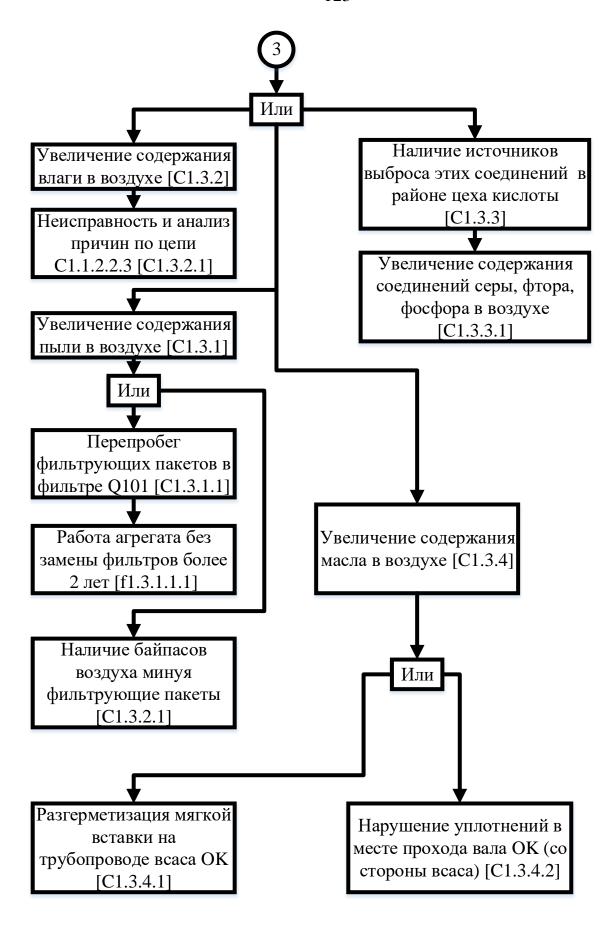


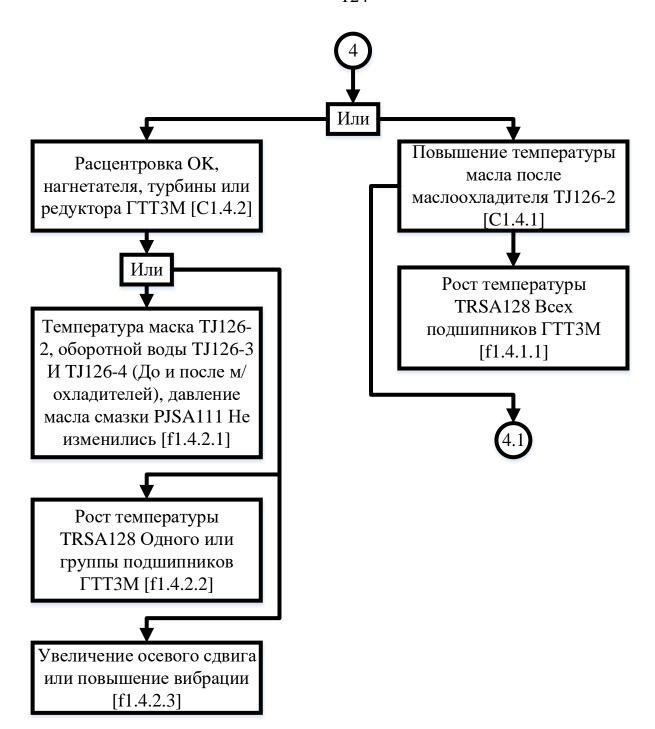

Дерево отказов в цепи подачи воздуха

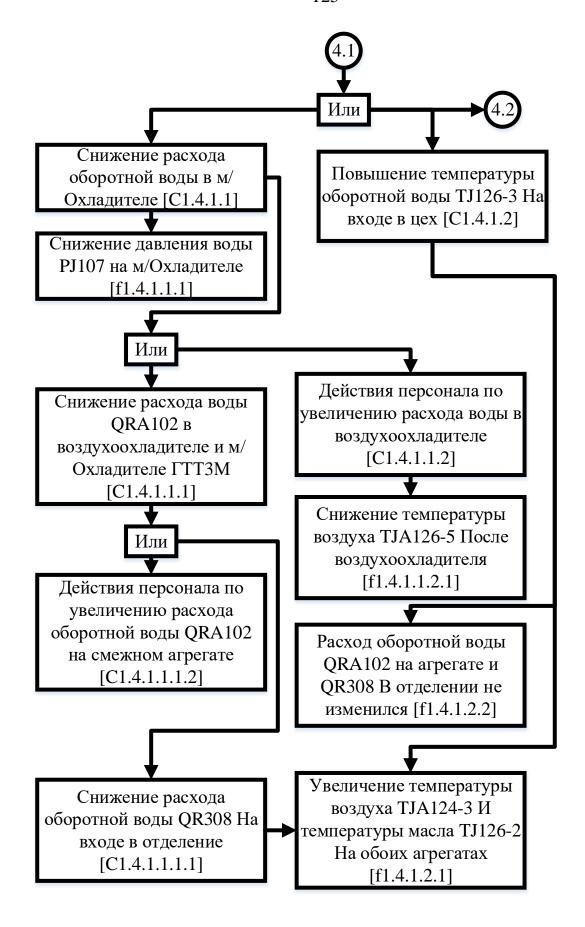


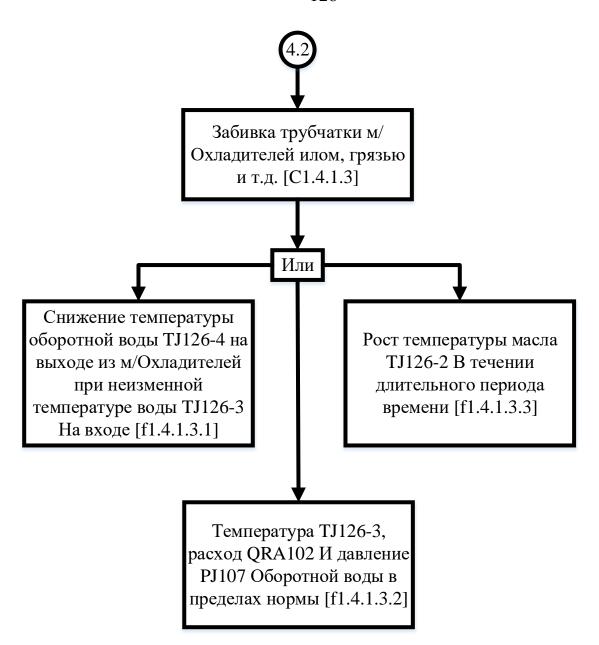












Приложение В. Значения основных измеряемых технологических показателей для трех цепей производства неконцентрированной азотной кислоты

Пустые ячейки – в данный момент технологический процесс был остановлен.

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор МЗ/ч	Природный газ в Подогревате ль МЗ/ч	Конденсат в абсорбцион ную Колонну
1	83750	9280	73750	8800	25300	1650	1800	15
2	83750	9280	73750	8800	25300	1650	1800	15
3	83750	9280	73750	8800	25300	1650	1800	15
4	83750	9280	73750	8960	25000	1650	1830	15
5	83750	9280	73750	8960	25000	1650	1830	15
6	83750	9280	73750	8960	25500	1650	1830	15
7	83750	9280	73750	8960	25500	1650	1830	15
8	84000	9440	75000	9000	26000	1670	1850	15
9	84000	9440	75000	9000	26000	1670	1850	15
10	84000	9440	75000	9000	25500	1670	1850	15
11	84000	9440	75000	9000	25200	1670	1850	15
12	84000	9440	75000	9000	25000	1670	1850	15
13	84000	9440	75000	9000	24600	1670	1850	15
14	84000	9440	75000	9000	25000	1670	1850	15
15	84000	9440	75000	9000	25300	1670	1850	15
16	84000	9440	75000	9000	25000	1670	1850	15
17	84000	9440	75000	9000	25000	1670	1780	15
18	84000	9440	75000	9000	25000	1670	1780	15
19	84000	9440	75000	9000	25000	1670	1820	15
20	84000	9440	75000	9000	25000	1670	1820	15
21	84000	9440	75000	9000	25000	1670	1820	15
22	84000	9440	75000	9000	25000	1670	1800	15
23	84000	9440	75000	9000	25500	1670	1850	14
24	84000	9400	74000	9000	25500	1680	1840	14
25	84000	9400	74000	9000	25300	1680	1840	14
26	84000	9400	74000	9000	25300	1680	1840	14
27	84000	9400	74000	9000	25200	1680	1840	14
28	84000	9400	74000	9000	25200	1680	1840	14
29	84000	9400	74000	9000	25200	1680	1850	14
30	85000	9400	74000	9000	25200	1680	1850	14
31	85000	9400	74000	9000	26000	1680	1850	14
32	85000	9440	75000	9000	26000	1680	1850	14
33	85000	9440	75000	9000	26000	1680	1850	14
34	85000	9440	75000	9000	26000	1680	1850	14
35	85000	9440	75000	9000	25600	1680	1850	14
36	85000	9440	75000	9000	25600	1680	1850	14
37	84000	9400	75000	8960	25000	1680	1850	13

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор М3/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
38	84000	9400	75000	8960	24900	1680	1850	13
39	84000	9400	75000	8960	24800	1680	1850	13
40	84000	9400	75000	8960	24800	1680	1850	13
41	84000	9400	74000	8960	24500	1680	1800	13
42	83000	9400	73000	8900	24500	1680	1700	13
43	83000	9400	73000	8900	24500	1680	1700	13
44	84000	9400	74000	8960	24500	1680	1800	12
45	84000	9400	74000	8960	23500	1680	1800	13
46	83000	9400	74000	8960	23500	1680	1800	14
47	83000	9300	73000	8900	23500	1680	1750	12
48	83000	9300	73000	8900	23900	1680	1750	12
49	83000	9400	73750	8900	23800	1680	1750	12
50	82500	9300	73000	8800	23300	1680	1670	11
51	82500	9300	73000	8800	23200	1680	1670	11
52	82500	9300	73000	8800	23500	1680	1670	11
53	82500	9300	73000	8800	24000	1680	1670	11
54	82500	9300	73000	8800	24000	1680	1720	12
55	82500	9300	73000	8800	24200	1680	1800	11
56	81250	9280	72500	8640	25000	1680	1720	11
57	81250	9280	72500	8640	25000	1680	1680	11
58	81250	9280	72500	8640	25000	1680	1680	11
59	81250	9280	72500	8640	25000	1680	1680	11
60	81250	9280	72500	8640	24800	1680	1680	11
61	81250	9280	72500	8640	24800	1680	1680	11
62	81250	9280	72500	8640	24500	1680	1680	11
63	81250	9280	72500	8640	25000	1680	1720	11
64	83000	9200	73000	8800	24800	1680	1730	11
65	83000	9200	73000	8800	24800	1680	1730	11
66	83000	9200	73000	8800	24500	1680	1730	11
67	82000	9200	73000	8800	24500	1680	1730	11
68	82000	9200	73000	8800	24500	1680	1730	11
69	82000	9200	73000	8800	24500	1680	1730	11
70	82000	9200	73000	8800	24300	1680	1650	11
71	82000	9200	72500	8800	25000	1670	1600	11
72	82000	9200	72500	8700	25100	1670	1650	11
73	82000	9200	72500	8700	25000	1670	1680	11
74	82000	9200	72000	8640	25200	1670	1760	11
75	82000	9200	72000	8640	25200	1670	1760	11
76	82000	9200	72000	8640	24900	1670	1760	11
77	82000	9200	72000	8640	25200	1670	1700	11
78	82000	9200	72000	8640	25200	1670	1700	11
79	82000	9200	72000	8640	25100	1670	1700	11
80	82500	9200	72000	8900	24900	1670	1720	11

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор МЗ/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
81	82500	9200	72000	8700	25000	1670	1700	13
82	82500	9200	72000	8700	25000	1670	1700	13
83	82500	9200	72000	8700	24900	1670	1700	13
84	82500	9200	72000	8700	24500	1670	1700	13
85	82500	9200	72000	8700	24500	1670	1700	13
86	82500	9200	72000	8700	24500	1670	1670	13
87	82500	9200	72000	8700	24200	1670	1670	13
88	82500	9200	72000	8700	23800	1670	1700	13
89	82500	9200	72000	8700	24000	1670	1700	12
90	82500	9200	72000	8700	24000	1670	1700	12
91	82000	9120	71250	8640	24300	1670	1700	12
92	82000	9120	71250	8640	24300	1670	1700	12
93	82000	9120	71250	8640	24500	1670	1700	12
94	82000	9120	71250	8640	24600	1670	1680	12
95	82000	9120	71250	8640	24600	1670	1680	12
96	82000	9120	71250	8640	24600	1670	1680	12
97	81250	9050	71250	8600	24500	1660	1680	12
98	81250	9050	70000	8600	24800	1660	1680	12
99	81250	9050	70000	8600	25400	1670	1720	12
100	81250	9050	71000	8600	25400	1670	1720	12
101	81250	9050	71000	8600	25500	1670	1700	12
102	81250	8960	70000	8480	25800	1680	1680	12
103	81250	8960	70000	8480	25200	1660	1680	12
104	81250	8960	70000	8480	25000	1660	1670	13
105	82500	9120	71250	8640	25000	1660	1700	13
106	82500	9120	71250	8640	25000	1660	1730	13
107	82500	9120	71250	8640	24800	1630	1750	13
108	82500	9120	71250	8640	24500	1630	1750	13
109	82500	9120	71250	8640	23500	1630	1750	13
110	82500	9120	71250	8640	23500	1630	1750	13
111	82500	9120	71250	8640	23500	1630	1750	13
112	83000	9200	72000	8700	23000	1630	1750	13
113	82000	9200	72000	8700	23500	1630	1720	13
114	83000	9200	72500	8700	23500	1630	1750	13
115	83000	9290	72500	8800	24000	1630	1750	13
116	83000	9280	72500	8800	24000	1630	1750	13
117	83000	9280	72500	8800	23000	1630	1750	13
118	83000	9200	72000	8640	23500	1630	1700	13
119	82000	9200	72500	8640	23500	1630	1650	13
120	82500	9200	72500	8640	24000	1630	1650	13
121	82500	9200	72500	8640	24000	1630	1700	13
122	82500	9200	72500	8640	24000	1630	1700	13
123	82500	9200	72500	8640	24000	1630	1700	13

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор М3/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
124	82500	9200	72500	8640	24000	1630	1700	13
125	82500	9200	72500	8640	24000	1630	1700	13
126	82500	9200	72500	8640	24000	1630	1700	13
127	82500	9200	72500	8640	24000	1630	1700	13
128	83750	9280	72500	8800	24000	1630	1720	13
129	83750	9280	72500	8800	24000	1630	1720	13
130	83750	9280	72500	8800	24000	1630	1750	13
131	83750	9280	72500	8800	24000	1630	1750	13
132	83750	9280	72500	8640	23000	1650	1600	13
133	85000	9440	75000	8800	24000	1700	1820	13
134	85000	9440	75000	8800	24000	1700	1820	13
135	85000	9440	75000	8800	24000	1720	1800	13
136	85000	9440	75000	8800	24000	1720	1800	13
137	85000	9440	75000	8800	23400	1720	1800	13
138	85000	9440	75000	8800	23100	1720	1800	13
139	85000	9440	75000	8800	23500	1720	1800	13
140	85000	9440	75000	8800	24000	1720	1800	13
141	85000	9440	75000	8800	24000	1720	1800	13
142	85000	9440	75000	8800	24000	1720	1800	13
143	85000	9440	75000	8800	24000	1720	1800	13
144	85000	9440	75000	8800	24000	1720	1800	13
145	85000	9440	75000	8800	24000	1720	1850	13
146	85000	9440	75000	8800	24000	1720	1850	13
147	85000	9440	75000	8800	24000	1720	1850	13
148	85000	9440	75000	8800	24000	1700	1850	13
149	85000	9440	75000	8800	24000	1750	1850	13
150	85000	9440	75000	8800	24000	1750	1850	13
151	85000	9440	75000	8800	23500	1760	1830	13
152	84500	9440	74500	8800	24400	1750	1810	13
153	84000	8550	74500	8800	24400	1720	1820	13
154	84000	8350	74500	8800	24200	1720	1830	13
155	84500	9440	75000	8800	24200	1720	1880	13
156	84500	9440	75000	8800	24600	1740	1810	13
157	83750	9350	73750	8800	24500	1740	1800	13
158	83750	9350	73750	8800	24200	1740	1830	13
159	83750	9350	73750	8800	24800	1740	1840	13
160	83750	9300	73750	8800	25000	1740	1800	11
161	83750	9300	73750	8700	25000	1700	1720	11
162	83750	9300	73750	8700	25000	1750	1720	11
163	83750	9300	73750	8700	25500	1750	1720	11
164	83750	9300	73750	8700	25500	1750	1720	11
165	83750	9300	73750	8700	25300	1750	1720	11
166	83750	9300	73000	8640	25500	1750	1720	11

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор М3/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
167	83750	9300	73000	8640	25600	1680	1720	11
168	83750	9300	73000	8640	26000	1680	1720	11
169	83750	9300	73000	8640	26000	1700	1750	11
170	83750	9300	72500	8640	25500	1700	1750	11
171	83750	9300	72500	8640	25500	1700	1750	11
172	83750	9300	72500	8640	25500	1700	1750	11
173	83750	9300	72500	8640	25500	1700	1750	11
174	83750	9300	72500	8640	26000	1700	1750	11
175	83750	9380	72500	8640	25800	1700	1750	11
176	84000	9900	73000	8640	26000	1700	1750	12
177	85000	9440	73750	8800	25200	1695	1810	12
178	85000	9440	73750	8800	24900	1680	1840	12
179	85000	9440	73750	8800	24100	1680	1850	12
180	85000	9440	73750	8800	24200	1680	1950	11
181	85000	9440	73750	8800	24500	1680	1900	11
182	85000	9440	73750	8800	25300	1680	1750	11
183	85000	9440	73750	8800	26000	1680	1750	11
184	85000	9440	73750	8800	25500	1680	1750	11
185	85000	9440	73750	8800	26000	1680	1750	11
186	85000	9440	73750	8800	26500	1680	1750	11
187	85000	9440	73750	8800	26500	1680	1750	11
188	85000	9440	73750	8800	26500	1680	1750	11
189	85000	9440	73750	8800	26500	1680	1750	11
190	85000	9440	73750	8800	26500	1680	1750	11
191	85000	9440	73750	8800	26300	1680	1750	11
192	85000	9440	73750	8800	26200	1680	1750	11
193	85000	9440	73750	8800	26500	1680	1720	11
194	85000	9440	73750	8800	26500	1680	1750	11
195	85000	9440	73750	8800	26500	1680	1720	11
196	85000	9440	73750	8800	26200	1680	1750	11
197	85000	9440	73750	8800	26200	1680	1750	11
198	85000	9440	73750	8800	26000	1680	1720	10
199	85000	9440	73750	8800	26000	1680	1720	10
200	85000	9440	73750	8800	26300	1680	1790	10
201	85000	9440	73750	8800	26100	1680	1790	13
202	85000	9440	73750	8800	25800	1680	1790	13
203	85000	9440	73750	8800	25000	1680	1790	13
204	85000	9440	73750	8800	25200	1680	1800	13
205	85000	9440	73750	8800	24800	1680	1780	13
206	85000	9440	73750	8800	24000	1680	1780	13
207	85000	9440	73750	8800	24500	1680	1780	13
208	85000	9440	73750	8800	25000	1680	1770	13
209	85000	9440	73750	8800	25000	1680	1770	13

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор МЗ/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
210	85000	9440	73750	8800	25500	1680	1770	13
211	85000	9440	73750	8800	26000	1680	1770	13
212	85000	9440	73750	8800	26000	1680	1770	13
213	85000	9440	73750	8800	26300	1680	1750	13
214	85000	9440	73750	8800	26500	1680	1750	13
215	85000	9440	73750	8800	26500	1680	1750	13
216	85000	9440	73750	8800	26500	1680	1750	13
217	85000	9440	73750	8800	26500	1680	1750	13
218	85000	9440	73750	8800	26600	1680	1750	13
219	85000	9440	73750	8800	26500	1680	1750	13
220	85000	9440	73750	8800	26500	1680	1750	13
221	85000	9440	73750	8800	26300	1680	1750	13
222	85000	9440	73750	8800	25800	1680	1750	13
223	85000	9440	73750	8800	25500	1680	1750	13
224	85000	9440	73750	8800	25100	1680	1780	13
225	85000	9440	73750	8800	25000	1680	1760	13
226	85000	9440	73750	8800	24200	1680	1750	13
227	85000	9440	73750	8800	25700	1680	1790	13
228	85000	9440	73750	8800	25500	1680	1760	13
229	85000	9440	73750	8800	25000	1680	1760	13
230	85000	9440	73750	8800	25000	1680	1760	13
231	85000	9440	73750	8800	25000	1680	1760	13
232	85000	9440	73750	8800	26000	1680	1750	13
233	85000	9440	73750	8800	26300	1680	1750	13
234	85000	9440	73750	8800	26500	1680	1780	13
235	85000	9440	73750	8800	26500	1680	1780	13
236	85000	9440	73750	8800	26500	1680	1750	13
237	85000	9440	73750	8800	26500	1680	1750	13
238	85000	9440	73750	8800	26500	1680	1750	13
239	85000	9440	75000	8800	26500	1680	1750	14
240	85000	9440	75000	8800	26300	1680	1850	14
241	85000	9440	75000	8800	26300	1680	1850	14
242	85000	9440	75000	8800	26200	1680	1850	14
243	85000	9440	75000	8800	26200	1680	1850	14
244	85000	9440	75000	8800	26500	1680	1850	14
245	85000	9440	75000	8800	26300	1680	1850	14
246	85000	9440	75000	8800	26300	1680	1850	14
247	85000	9440	75000	8800	26300	1680	1850	14
248	85000	9440	75000	8800	26500	1680	1850	14
249	85000	9440	75000	8800	26500	1680	1850	14
250	85000	9440	75000	8800	26200	1650	1850	14
251	85000	9440	75000	8800	26200	1650	1850	14
252	85000	9440	75000	8800	26200	1680	1880	14

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор МЗ/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
253	85000	9440	75000	8800	26000	1680	1870	14
254	85000	9440	75000	8800	26000	1680	1850	14
255	85000	9440	75000	8800	25500	1680	1800	14
256	85000	9440	75000	8800	25700	1680	1800	14
257	83750	9440	73750	8800	26300	1680	1780	14
258	83750	9440	73750	8800	26500	1680	1770	14
259	83750	9440	73750	8800	26500	1680	1770	14
260	83750	9440	73750	8800	26500	1680	1770	14
261	83750	9440	73750	8800	26500	1680	1800	14
262	83750	9440	73750	8800	26500	1680	1800	14
263	85000	9440	75000	8800	26500	1680	1750	14
264	85000	9440	75000	8800	26300	1680	1850	14
265	85000	9440	75000	8800	26300	1680	1850	14
266	85000	9440	75000	8800	26200	1680	1850	14
267	85000	9440	75000	8800	26200	1680	1850	14
268	85000	9440	75000	8800	26500	1680	1850	14
269	85000	9440	75000	8800	26300	1680	1850	14
270	85000	9440	75000	8800	26300	1680	1850	14
271	85000	9440	75000	8800	26300	1680	1850	14
272	85000	9440	75000	8800	26500	1680	1850	14
273	85000	9440	75000	8800	26500	1680	1850	14
274	85000	9440	75000	8800	26200	1650	1850	14
275	85000	9440	75000	8800	26200	1650	1850	14
276	85000	9440	75000	8800	26200	1680	1880	14
277	85000	9440	75000	8800	26000	1680	1870	14
278	85000	9440	75000	8800	26000	1680	1850	14
279	85000	9440	75000	8800	25500	1680	1800	14
280	85000	9440	75000	8800	25700	1680	1800	14
281	83750	9440	73750	8800	26300	1680	1780	14
282	83750	9440	73750	8800	26500	1680	1770	14
283	83750	9440	73750	8800	26500	1680	1770	14
284	83750	9440	73750	8800	26500	1680	1770	14
285	83750	9440	73750	8800	26500	1680	1800	14
286	83750	9440	73750	8800	26500	1680	1800	14
287	85000	9440	75000	8800	27000	1680	1800	14
288	85000	9440	75000	8800	27000	1680	1800	14
289	85000	9440	75000	8800	27200	1680	1800	14
290	85000	9440	75000	8800	27200	1680	1810	14
291	85000	9440	75000	8800	27200	1680	1800	14
292	85000	9440	75000	8800	27000	1680	1800	14
293	85000	9440	75000	8800	26800	1680	1800	14
294	85000	9440	75000	8800	27000	1680	1800	14
295	85000	9440	75000	8800	27000	1680	1800	14

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор МЗ/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
296	85000	9440	75000	8800	27000	1680	1760	14
297	84000	9440	74000	8800	26700	1680	1780	14
298	83750	9300	73750	8700	26700	1680	1750	14
299	83750	9300	73750	8700	26700	1670	1750	14
300	83750	9300	73750	8700	27000	1670	1750	14
301	83750	9300	73750	8700	27500	1670	1750	14
302	83000	9280	72500	8640	27200	1670	1750	12
303	83000	9280	72500	8640	27000	1670	1700	12
304	83000	9280	73000	8640	27200	1670	1730	13
305	83000	9280	73000	8640	27000	1670	1730	13
306	83750	9300	73000	8700	27000	1670	1730	13
307	83750	9300	73000	8700	27000	1670	1730	13
308	83750	9300	73000	8700	27000	1670	1740	13
309	83750	9300	73000	8700	27300	1670	1750	13
310	83750	9300	73500	8700	27200	1670	1750	13
311	84000	9400	75000	8800	27500	1680	1730	12
312	84000	9400	75000	8800	27000	1680	1730	12
313	84000	9400	75000	8800	27000	1680	1730	12
314	85000	9440	75000	8800	27500	1680	1730	12
315	85000	9440	75000	8800	27600	1680	1750	12
316	85000	9440	75000	8800	28000	1680	1750	12
317	85000	9440	75000	8800	28000	1680	1750	12
318	85000	9440	75000	8800	28000	1680	1750	12
319	85000	9440	75000	8800	25500	1680	1750	12
320	85000	9440	75000	8800	25500	1680	1750	12
321	84000	9440	75000	8800	25000	1680	1750	12
322	85000	9100	75000	8800	24700	1670	1750	13
323	85000	9440	75000	8800	25000	1670	1750	13
324	85000	9440	75000	8800	25000	1670	1750	13
325	85000	9440	75000	8800	25000	1670	1750	13
326	85000	9440	75000	8800	24500	1670	1720	13
327	85000	9440	75000	8800	24500	1670	1720	13
328	85000	9500	76000	8900	24800	1670	1800	13
329	85000	9500	76250	8960	24800	1670	1750	13
330	84000	9440	75000	8800	24000	1670	1750	13
331	84000	9440	75000	8800	24000	1670	1750	13
332	84000	9440	75000	8800	24000	1670	1750	13
333	84000	9440	75000	8800	24000	1670	1750	13
334	84000	9440	75000	8800	24000	1670	1750	13
335	83750	9440	74000	8800	24500	1680	1760	13
336	83750	9300	73750	8800	24500	1680	1760	13
337	83750	9300	73750	8800	24500	1680	1760	13
338	83750	9300	73750	8800	24500	1680	1780	13

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор МЗ/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
339	83750	9300	73750	8800	25000	1680	1780	13
340	83750	9300	73750	8800	25000	1680	1780	13
341	83750	9300	73750	8800	25000	1680	1780	13
342	83750	9300	73750	8800	25000	1680	1780	13
343	83750	9300	73750	8800	25000	1680	1780	13
344	83750	9300	73750	8700	25000	1690	1760	13
345	83750	9300	73750	8700	25000	1680	1760	13
346	84500	9440	80000	8800	26000	1680	1760	13
347	84500	9440	80000	8800	26000	1680	1760	13
348	84500	9440	80000	8800	26000	1680	1760	13
349	84500	9440	80000	8800	25700	1680	1750	13
350	84500	9440	80000	8800	24700	1680	1750	13
351	84500	9440	80000	8800	24500	1680	1770	13
352	84500	9440	75000	8800	24200	1680	1780	13
353	84500	9440	75000	8800	24100	1680	1780	13
354	84500	9440	75000	8800	24100	1680	1780	13
355	84500	9440	75000	8800	24200	1680	1780	13
356	84500	9440	75000	8800	24600	1680	1780	13
357	84500	9440	75000	8800	24120	1680	1780	13
358	84500	9440	75000	8800	24120	1680	1780	13
359	84500	9440	75000	8800	24100	1680	1780	13
360	85000	9440	75000	8800	24000	1680	1780	13
361	85000	9440	75000	8800	24000	1680	1780	13
362	85000	9440	75000	8800	25000	1680	1800	13
363	85000	9440	75000	8800	25000	1680	1780	13
364	85000	9440	75000	8800	25000	1680	1750	13
365	85000	9440	75000	8800	25000	1680	1750	13
366	85000	9440	75000	8800	25000	1680	1750	13
367	85000	9440	75000	8800	25000	1680	1750	13
368	85000	9440	75000	8800	25000	1680	1720	13
369	85000	9440	75000	8800	25000	1680	1720	13
370	85000	9440	75000	8800	25500	1680	1750	13
371	85000	9440	75000	8800	25800	1680	1730	13
372	85000	9440	75000	8800	26000	1680	1720	13
373	85000	9440	75000	8800	26000	1680	1720	14
374	83750	9280	72500	8640	26500	1680	1700	14
375	86500	9600	77000	9050	25000	1680	1730	14
376	86500	9600	77000	9050	24500	1670	1740	14
377	86500	9680	77000	9050	24200	1660	1750	14
378	86500	9680	77000	9050	24800	1660	1750	14
379	86500	9680	77000	9050	25300	1660	1750	14
380	86500	9680	77000	9050	25400	1660	1780	14
381	86750	9760	77500	9120	25200	1660	1820	14

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор МЗ/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
382	86800	9760	77500	9120	24900	1660	1820	14
383	86250	9600	76250	8850	23600	1680	1750	14
384	86250	9600	76250	8850	23400	1680	1750	13
385	86250	9600	76250	8850	23300	1680	1750	13
386	86250	9600	76250	8850	23300	1680	1750	12
387	86250	9600	76250	8850	24900	1680	1750	12
388	86250	9600	76250	8850	24900	1680	1760	12
389	86250	9600	76250	8850	24900	1680	1750	12
390	86250	9600	76250	8850	24900	1680	1740	12
391	86250	9600	76250	8850	24900	1680	1750	12
392	86250	9600	76250	8850	24800	1680	1750	14
393	86250	9600	76250	8850	24800	1680	1750	14
394	86250	9600	76250	8850	24800	1680	1750	14
395	86250	9600	76250	8850	24800	1680	1750	14
396	86250	9600	76250	8850	24500	1680	1750	14
397	86250	9600	76250	8850	24500	1680	1750	14
398	86250	9600	76250	8850	24500	1680	1750	14
399	86250	9600	76250	8850	24500	1680	1750	13
400	86250	9600	76250	8850	24500	1680	1750	13
401	86250	9600	76250	8850	24500	1680	1750	13
402	86250	9600	76250	8850	25000	1680	1750	13
403	86250	9600	76250	8850	25000	1680	1750	13
404	86250	9600	76250	8850	24500	1680	1750	13
405	85000	9600	76000	8800	24500	1680	1720	13
406	85000	9600	76000	8800	24500	1680	1720	13
407	85000	9600	76000	8800	25000	1680	1720	12
408	85000	9500	76000	8800	24500	1680	1720	12
409	85000	9500	75000	8800	25000	1680	1700	12
410	85000	9500	75000	8700	25500	1680	1750	12
411	86000	9600	75500	8800	25500	1680	1750	12
412	85000	9500	75000	8700	25000	1680	1720	12
413	85000	9500	75000	8700	26500	1680	1730	12
414	85000	9500	75000	8700	26500	1680	1730	12
415	85000	9500	75000	8700	26600	1680	1700	12
416	85000	9500	75000	8700	26600	1680	1740	12
417	85000	9500	75000	8700	26600	1680	1740	12
418	85000	9500	75000	8700	26300	1680	1730	12
419	85000	9500	75000	8700	25600	1680	1720	13
420	85000	9500	75000	8700	25600	1680	1700	13
421	85000	9500	75000	8700	26300	1680	1750	13
422	85000	9500	75000	8700	26600	1680	1750	13
423	85000	9500	75000	8700	26600	1680	1750	13
424	85000	9500	75000	8700	26600	1680	1750	13

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор М3/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
425	85000	9500	75000	8700	26500	1680	1720	13
426	85000	9500	75000	8700	27000	1680	1720	13
427	85000	9500	75000	8700	27200	1680	1720	13
428	85000	9500	75000	8700	27200	1680	1720	13
429	85000	9500	75000	8700	27200	1680	1720	13
430	85000	9500	75000	8700	27200	1680	1720	13
431	85000	9500	75000	8700	27000	1670	1700	13
432	85000	9500	74500	8700	27000	1670	1720	13
433	85000	9500	75000	8750	27000	1670	1720	13
434	85000	9500	75000	8800	27000	1660	1700	13
435	85000	9500	75000	8750	27200	1660	1730	13
436	85000	9500	75000	8750	27200	1660	1730	13
437	85000	9500	75000	8750	27200	1660	1730	13
438	85000	9500	75000	8750	26800	1660	1750	13
439	85000	9500	75000	8750	26800	1660	1750	13
440	85000	9500	75000	8750	26800	1660	1750	13
441	86000	9600	75000	8750	26800	1670	1750	13
442	86000	9600	75000	8750	26800	1680	1750	13
443	86000	9600	75000	8750	26800	1680	1750	13
444	86000	9600	75000	8800	26800	1680	1750	13
445	86000	9600	75000	8800	25800	1680	1820	13
446	86000	9600	76250	8800	25800	1680	1820	13
447	86000	9500	76250	8750	26500	1680	1800	13
448	85000	9500	75000	8750	26500	1680	1800	13
449	85000	9500	75000	8750	26000	1680	1800	13
450	85000	9500	75000	8750	26000	1680	1800	13
451	85000	9500	75000	8750	26000	1680	1800	13
452	85000	9500	75000	8750	26000	1750	1800	13
453	85000	9500	75000	8750	26000	1680	1780	12
454	85000	9500	75000	8750	26000	1680	1780	12
455	84000	9800	75000	8750	26800	1680	1880	12
456	84000	9450	75000	8700	26400	1680	1880	12
457	84000	9450	75000	8700	26400	1680	1850	12
458	84000	9450	75000	8700	26400	1680	1850	12
459	84000	9440	75000	8800	26500	1680	1850	12
460	84000	9440	75000	8800	26200	1680	1850	12
461	84000	9440	75000	8800	25800	1680	1960	12
462	84000	9440	75000	8800	25500	1680	1920	10
463	83750	9440	75000	8640	25500	1680	1950	13
464	83750	9440	75000	8640	25000	1600	1950	17
465	83750	9440	75000	8640	27000	1350	2000	17
466	80000	8960	71250	8320	30500	1250	1950	14
467								

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор М3/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
			Оста	нов технолог				•
468								
469								
470								
471								
472								
473								
474								
475								
476								
477								
478								
479								
480								
481								
482								
483								
484								
485								
486								
487								
488								
489								
490								
491								
492								
493								
494								
495								
496								
497								
498								
499								
500								
501								
502								
503								
504								

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор МЗ/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
505								
506	77000	8500	67000	8160	26000	1650	1720	8
507	77000	8500	67000	8160	26000	1650	1720	8
508	77000	8500	67000	8160	26000	1650	1720	8
509	76250	8480	66250	8160	26500	1650	1750	8
510	76250	8480	66250	8160	26800	1650	1720	8
511	76250	8480	66250	8160	27000	1650	1720	8
512	77500	8600	67500	8160	26800	1650	1770	8
513	77500	8600	67500	8160	27000	1650	1770	8
514	77500	8600	67500	8160	27000	1650	1770	8
515	77500	8600	67500	8160	27000	1650	1770	8
516	77500	8600	67500	8160	27000	1650	1770	8
517	77500	8600	67500	8160	27000	1650	1750	8
518	77500	8600	67500	8160	27000	1650	1750	8
519	77500	8600	67500	8200	27000	1650	1760	8
520	77500	8600	67500	8200	27000	1650	1760	8
521	77500	8600	67500	8200	27000	1650	1780	8
522	77500	8600	67500	8200	27000	1650	1780	8
523	77500	8600	67500	8200	27000	1650	1780	8
524	77500	8600	67500	8200	27000	1650	1800	8
525	77500	8600	67500	8200	27000	1650	1800	8
526	77000	8500	67000	8160	26500	1650	1750	9
527	77000	8500	67000	8160	26500	1650	1750	9
528	77000	8500	67000	8160	26500	1650	1750	9
529	77000	8500	67000	8160	26500	1650	1750	7
530	77000	8500	67000	8160	26500	1650	1750	7
531	77000	8500	67000	8160	26500	1650	1750	7
532	77000	8500	67000	8160	26000	1650	1750	7
533	77000	8500	67000	8160	26000	1650	1750	7
534	77500	8600	67500	8200	26000	1650	1750	7
535	77500	8600	67500	8200	26200	1650	1800	7
536	77500	8600	67500	8200	26100	1650	1800	7
537	77500	8600	67500	8200	25800	1650	1800	7
538	77500	8600	67500	8200	26500	1650	1800	7
539	77500	8600	67500	8200	26100	1650	1800	7
540	77500	8600	67500	8200	26100	1650	1800	7
541	77500	8600	67500	8200	25900	1650	1800	7
542	77500	8600	67500	8200	25900	1650	1800	7
543	77500	8600	67500	8200	26200	1650	1800	7
544	77500	8600	67500	8200	26800	1650	1800	7
545	77000	8500	67000	8160	26500	1650	1770	7
546	77000	8500	67000	8160	26500	1650	1770	7
547	77000	8500	67000	8160	26500	1650	1770	7

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор М3/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
548	77000	8500	67000	8160	26500	1650	1770	7
549	77000	8500	67000	8160	26500	1650	1760	7
550	77000	8500	67000	8160	26700	1650	1770	7
551	77000	8500	67000	8160	26800	1650	1750	7
552	77000	8500	67000	8160	27000	1650	1750	7
553	77000	8500	67000	8160	27000	1650	1750	7
554	77000	8500	67000	8160	27000	1650	1760	7
555	77000	8500	67000	8160	27000	1650	1780	7
556	77000	8500	67000	8160	27000	1650	1760	7
557	77000	8500	67000	8160	27000	1650	1780	7
558	77000	8500	67000	8160	27000	1650	1780	7
559	77000	8500	67000	8200	26800	1650	1790	7
560	77000	8600	67000	8160	26400	1650	1780	7
561	77000	8600	67000	8160	26300	1650	1780	7
562	77000	8600	67000	8160	26200	1650	1780	7
563	77000	8600	67000	8160	26800	1650	1780	7
564	77000	8600	67000	8300	26800	1650	1780	7
565	77000	8600	67000	8300	26500	1650	1780	7
566	77000	8600	67000	8300	26800	1650	1780	7
567	77500	8600	67500	8160	26800	1650	1780	7
568	77500	8600	67500	8160	26500	1650	1750	7
569	77500	8600	67500	8160	26500	1650	1750	7
570	77500	8600	67500	8160	26500	1650	1750	7
571	77500	8600	67500	8160	26500	1650	1750	7
572	77500	8600	67500	8160	26500	1650	1750	7
573	77500	8600	67500	8160	26500	1650	1750	7
574	77500	8640	67500	8320	27500	1640	1750	7
575	77500	8600	67500	8320	27300	1640	1750	8
576	77500	8600	67500	8320	27500	1640	1750	8
577	77500	8600	67500	8320	27500	1640	1770	8
578	77500	8640	67500	8320	27500	1640	1770	8
579	77500	8640	67500	8320	27500	1640	1750	8
580	77500	8640	67500	8320	27300	1640	1750	8
581	77500	8640	67500	8320	27300	1640	1750	8
582	77500	8640	67500	8320	27300	1640	1750	8
583	77500	8640	67500	8320	27600	1640	1770	8
584	77500	8640	67500	8320	27500	1650	1800	8
585	77500	8640	67500	8320	27500	1650	1800	8
586	78500	8800	69000	8400	28200	1650	1830	8
587	78500	8800	68750	8400	27500	1680	1800	8
588	78500	8800	68750	8320	26800	1650	1800	8
589	78500	8800	68750	8320	26500	1650	1800	8
590	78500	8800	68750	8320	26500	1650	1800	8

Временная метка	Воздух в Р12/1 М3/ч	Аммиак в Р12/1 М3/ч	Воздух в Р12/2 М3/ч	Аммиак в Р12/2 М3/ч	Воздух в продувочну ю колонну МЗ/ч	Природный газ в реактор М3/ч	Природный газ в Подогревате ль М3/ч	Конденсат в абсорбцион ную Колонну
591	78500	8640	68750	8320	27000	1650	1800	8
592	78500	8640	68750	8320	27000	1650	1800	8
593	78500	8640	68750	8320	27700	1650	1800	8
594	78500	8640	68750	8320	27700	1650	1810	8
595	78500	8640	68750	8320	27700	1650	1800	8
596	78500	8640	68750	8320	27700	1650	1820	8
597	78500	8640	68750	8320	27700	1650	1820	8
598	77500	8640	67500	8160	27500	1640	1720	7
599	77500	8600	67500	8200	27000	1640	1720	7
600	77500	8600	67500	8200	27000	1640	1720	7
601	77500	8600	67500	8200	27000	1640	1720	7
602	77500	8640	67500	8200	27000	1640	1700	7
603	77500	8640	67500	8260	27000	1640	1700	7
604	77500	8640	67500	8300	27500	1640	1750	7
605	77500	8640	67500	8300	27500	1640	1750	7
606	77500	8640	67500	8300	27500	1640	1750	7
607	77500	8640	68000	8320	27200	1640	1750	7
608	77500	8640	68000	8320	27200	1640	1720	1
609	77500	8640	68000	8320	27500	1640	1720	7
610	77500	8640	68000	8320	27000	1640	1790	7
611	77500	8640	68000	8320	27000	1640	1780	7
612	77500	8640	68750	8400	27300	1640	1780	7
613	77500	8640	68750	8400	27300	1640	1770	7
614	77500	8640	68750	8400	27300	1640	1770	7
615	77500	8640	68750	8320	27300	1640	1770	7
616	77500	8640	68750	8320	27300	1640	1770	7
617	77500	8640	68750	8320	27300	1640	1770	7
618	77500	8640	68750	8320	27300	1640	1770	7
619	77500	8640	68750	8320	27500	1640	1770	7
620	77500	8640	68750	8320	27500	1640	1770	7
621	77500	8640	68750	8320	27500	1640	1770	7
619	77500	8640	68750	8320	27500	1640	1770	7
620	77500	8640	68750	8320	27500	1640	1770	7
621	77500	8640	68750	8320	27500	1640	1770	7

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 0С	Температу ра нитрозного газа под сетками Р 12/2 0C	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед P-40 0C	Температу ра выхлопног о газа после P-40 0C
1	38	34	870	862	495	490	742
2	38	34	870	858	495	490	745
3	38	34	870	858	495	490	745
4	38	34	870	858	495	490	745
5	38	34	870	858	495	490	750
6	38	34	870	852	495	490	750
7	38	34	870	852	495	490	750
8	38	34	870	852	495	490	750
9	38	34	870	852	495	490	750
10	38	34	871	859	495	490	750
11	38	34	871	859	495	490	750
12	38	34	870	858	495	490	750
13	38	34	869	855	495	490	750
14	38	34	869	855	495	490	750
15	38	34	870	856	495	490	750
16	38	34	870	856	495	490	750
17	38	34	870	856	495	490	755
18	38	34	870	856	495	490	745
19	38	34	869	855	495	490	750
20	38	34	869	855	495	490	750
21	38	34	869	855	495	490	745
22	38	34	868	854	495	490	745
23	38	34	868	854	495	490	745
24	38	34	868	854	495	490	745
25	38	34	869	855	495	490	750
26	38	34	869	858	495	490	750
27	38	34	869	856	495	490	748
28	38	34	865	853	495	490	750
29	38	34	866	855	495	490	750
30	38	34	869	858	498	490	750
31	38	34	871	860	495	490	750
32	38	34	871	860	495	490	750
33	38	34	871	860	495	490	750
34	38	34	871	860	495	490	750
35	38	34	873	862	495	490	745
36	38	34	875	865	495	490	750
37	38	34	876	865	495	490	740

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 0С	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед P-40 0C	Температу ра выхлопног о газа после P-40 0C
38	38	34	875	865	495	490	735
39	38	34	868	861	490	490	735
40	38	34	868	862	490	490	740
41	38	34	865	862	490	490	730
42	38	34	865	862	490	490	740
43	38	34	865	862	490	488	740
44	37	33	865	855	490	488	745
45	37	33	865	855	495	488	745
46	37	34	863	853	495	488	745
47	37	33	863	853	495	488	740
48	37	34	863	853	495	488	742
49	37	33	860	850	495	490	745
50	37	33	861	850	495	490	747
51	37	33	863	850	495	490	749
52	37	33	868	850	495	490	745
53	37	34	868	850	495	490	745
54	37	33	868	850	495	490	745
55	37	33	868	850	495	490	745
56	37	33	868	850	495	490	748
57	37	33	868	850	495	490	748
58	37	33	868	850	495	490	750
59	37	33	868	850	495	490	750
60	37	33	865	850	495	490	750
61	37	33	865	850	495	490	745
62	37	34	864	850	495	490	750
63	37	34	863	850	495	490	750
64	37	34	863	850	495	490	750
65	37	34	865	850	495	490	750
66	37	34	865	850	495	488	745
67	37	34	865	850	495	488	748
68	37	33	867	852	495	488	745
69	37	33	867	852	495	488	745
70	37	33	867	852	495	488	745
71	37	33	867	852	495	488	745
72	37	33	868	855	495	490	745
73	37	32	870	850	495	488	745
74	37	32	870	850	496	488	749
75	37	32	869	851	496	488	749
76	37	32	870	852	496	488	740
77	37	32	870	852	496	488	740

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 ОС	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед Р-40 0С	Температу ра выхлопног о газа после P-40 OC
78	37	32	872	852	496	488	745
79	37	32	870	853	495	488	745
80	37	32	870	853	495	488	748
81	37	32	868	850	495	488	745
82	37	32	865	850	495	488	745
83	37	32	865	850	495	488	745
84	37	32	865	850	495	488	745
85	37	32	865	850	495	488	745
86	37	32	865	850	495	488	742
87	37	32	865	850	495	488	745
88	36	31	865	850	495	488	740
89	36	31	865	850	495	488	740
90	36	31	865	850	495	490	745
91	36	31	865	850	495	490	745
92	36	31	865	850	495	490	740
93	36	31	865	850	495	490	740
94	36	31	865	850	495	490	745
95	36	31	868	850	495	490	740
96	36	31	870	850	496	490	740
97	36	31	870	850	496	490	740
98	36	31	870	850	496	489	740
99	36	31	870	850	496	489	740
100	36	31	870	850	496	488	740
101	36	31	872	852	495	488	740
102	36	31	872	852	495	488	740
103	36	31	872	852	495	488	740
104	36	31	872	852	495	488	740
105	36	31	872	852	495	488	740
106	36	31	872	857	495	488	740
107	37	31	870	857	495	490	742
108	37	31	870	857	495	490	742
109	37	31	868	850	495	490	740
110	37	31	868	850	495	490	740
111	37	31	860	850	495	490	740
112	37	31	860	850	495	490	740
113	37	31	860	850	495	490	740
114	37	32	860	850	495	490	740
115	37	32	860	850	495	490	740
116	37	32	863	850	496	490	745
117	37	33	863	850	496	490	740

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 0С	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед Р-40 0С	Температу ра выхлопног о газа после P-40 0C
118	37	33	863	850	496	490	740
119	37	33	863	850	496	490	740
120	37	32	865	850	496	490	740
121	37	32	865	852	496	488	745
122	37	32	868	852	498	488	745
123	37	32	870	855	498	488	745
124	37	32	870	855	498	488	745
125	37	32	870	855	498	488	745
126	37	32	870	855	498	488	745
127	37	32	870	855	498	488	745
128	37	32	870	855	498	488	745
129	37	32	868	853	498	488	745
130	38	32	865	852	498	488	748
131	38	32	865	852	498	488	748
132	38	32	865	852	498	488	748
133	38	32	865	852	498	488	748
134	38	31	865	850	498	488	740
135	39	33	868	852	498	488	740
136	39	33	868	852	498	488	740
137	38	33	868	850	498	490	735
138	38	33	869	852	499	490	735
139	38	33	865	850	499	490	740
140	38	33	865	850	499	490	740
141	38	33	867	850	499	490	745
142	38	33	869	850	499	490	740
143	38	33	869	850	499	490	740
144	38	33	870	850	499	490	745
145	38	33	870	850	499	490	745
146	38	33	870	852	499	490	740
147	38	33	870	852	499	490	740
148	38	33	870	852	499	490	740
149	38	33	868	852	499	490	740
150	38	33	868	852	499	490	740
151	38	33	868	852	499	490	740
152	38	33	868	852	499	490	740
153	38	34	868	852	499	490	740
154	38	34	868	852	499	490	740
155	38	34	868	852	499	490	740
156	38	34	869	852	499	490	740
157	38	34	869	852	499	490	740

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 ОС	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед Р-40 0С	Температу ра выхлопног о газа после P-40 OC
158	38	34	869	852	499	490	740
159	38	34	869	852	499	490	740
160	38	34	868	852	499	490	750
161	38	34	868	852	499	490	750
162	38	34	868	852	499	490	750
163	38	34	868	852	499	490	750
164	38	34	870	853	499	490	750
165	38	34	870	853	499	490	750
166	38	34	870	853	499	490	750
167	38	34	870	853	499	490	750
168	38	34	870	853	499	490	750
169	38	33	871	856	499	490	750
170	38	33	871	856	499	490	745
171	38	32	872	858	499	490	745
172	38	32	872	858	499	490	742
173	38	32	872	860	499	490	745
174	38	32	872	860	499	490	745
175	38	32	872	860	499	490	745
176	38	33	872	860	499	490	740
177	38	33	872	860	499	490	740
178	38	33	872	861	499	490	740
179	38	33	872	861	499	490	740
180	38	33	871	858	499	490	740
181	38	33	871	858	499	490	740
182	38	33	868	856	499	490	740
183	38	33	868	856	499	490	740
184	38	33	869	854	490	485	745
185	38	33	869	855	490	485	740
186	38	33	869	858	490	485	738
187	38	33	870	858	490	485	740
188	38	33	870	860	490	485	740
189	38	33	870	860	490	485	740
190	38	33	870	860	490	485	740
191	38	33	870	860	490	485	740
192	38	33	871	860	490	485	740
193	38	33	872	860	490	485	740
194	38	33	872	860	490	485	740
195	38	33	872	860	490	485	740
196	38	33	872	860	490	483	742
197	38	33	872	860	490	483	740

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 0С	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед Р-40 0С	Температу ра выхлопног о газа после P-40 0C
198	38	33	872	860	490	483	740
199	38	33	872	860	490	483	740
200	38	33	872	860	490	483	740
201	38	33	872	860	490	483	740
202	38	33	872	860	490	483	740
203	38	33	871	859	490	484	740
204	38	33	871	855	490	484	740
205	38	33	871	855	490	484	740
206	38	33	870	855	490	484	740
207	38	33	870	855	490	484	740
208	38	33	868	854	490	484	740
209	38	33	865	852	485	485	740
210	38	33	865	852	485	483	740
211	38	33	865	852	485	483	735
212	38	33	865	855	485	483	745
213	38	33	868	858	485	483	742
214	38	33	868	858	485	483	745
215	38	33	868	859	485	483	745
216	38	33	870	860	485	483	750
217	38	33	870	860	495	485	740
218	38	33	871	860	495	485	740
219	38	33	871	860	495	485	740
220	38	33	871	860	495	485	740
221	38	33	871	860	495	485	740
222	38	33	873	861	495	485	745
223	38	33	875	862	495	485	735
224	38	33	873	860	495	485	740
225	38	33	871	858	495	485	740
226	38	33	871	858	495	485	740
227	38	33	870	858	495	485	740
228	38	33	868	854	495	485	740
229	38	33	866	856	495	485	740
230	38	33	863	852	495	485	740
231	38	33	863	852	495	485	740
232	38	33	863	853	495	485	740
233	38	33	864	853	495	485	735
234	38	33	868	858	495	485	745
235	38	33	868	858	495	485	740
236	38	33	870	860	495	485	740
237	38	33	870	860	495	485	740

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 ОС	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед Р-40 0С	Температу ра выхлопног о газа после P-40 0C
238	38	33	870	860	495	485	740
239	38	33	870	860	495	485	742
240	38	33	870	860	495	485	745
241	38	33	870	860	495	485	745
242	38	33	871	860	495	485	750
243	38	33	871	860	495	485	745
244	38	33	871	860	495	485	740
245	38	33	872	861	495	485	740
246	38	33	872	861	495	485	745
247	38	33	872	861	495	485	745
248	38	33	872	861	495	485	745
249	38	33	872	861	495	485	750
250	37	34	872	862	495	485	740
251	38	34	872	860	495	484	740
252	38	33	872	860	495	484	740
253	38	33	872	860	495	487	740
254	38	33	870	860	495	485	740
255	38	34	870	860	495	485	740
256	37	33	868	858	495	485	740
257	37	33	868	858	495	485	740
258	38	34	868	858	495	486	742
259	37	35	860	858	495	485	742
260	39	35	860	868	495	485	740
261	39	35	860	868	495	485	740
262	39	35	860	868	495	485	740
263	38	35	860	860	495	485	748
264	38	35	860	860	495	485	742
265	38	33	870	860	495	485	742
	38	33	871	860	495	485	750
266 267	38	33	871	860	495	485	745
267	38	33	871	860	495	485	743
	38	33	872	861	495	485	740
269	38	33	872	861	495	485	740
270	38	33	872	861	495	485	745
271	38	33	872	861	495	485	745
272	38	33	872	861	495	485	750
273	37	34	872	862	495	485	740
274	38	34	872	860	495	484	740
275	38	33	872	860	495	484	740
276 277	38	33	872	860	495	487	740

279 38 34 870 860 495 485 77. 280 37 33 868 858 495 485 77. 281 37 33 868 858 495 485 77. 282 38 34 868 858 495 485 77. 283 38 35 860 858 495 485 77. 284 37 35 860 858 495 485 77. 285 38 35 860 868 495 485 77. 286 38 35 860 868 495 485 77. 287 39 35 860 860 495 485 77. 288 39 35 860 860 495 485 77. 289 38 35 870 860 495 488 77. 2	Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 ОС	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед Р-40 0С	Температу ра выхлопног о газа после P-40 0C
280 37 33 868 858 495 485 77 281 37 33 868 858 495 485 77 282 38 34 868 858 495 485 77 283 38 35 860 858 495 485 77 284 37 35 860 858 495 485 77 286 38 35 860 868 495 485 77 286 38 35 860 860 495 485 77 287 39 35 860 860 495 485 77 288 39 35 860 860 495 485 77 289 38 35 870 860 495 488 77 289 38 35 870 860 495 488 77 <td< td=""><td>278</td><td>38</td><td>33</td><td>870</td><td>860</td><td>495</td><td>485</td><td>740</td></td<>	278	38	33	870	860	495	485	740
281 37 33 868 858 495 485 77 282 38 34 868 858 495 486 7. 283 38 35 860 858 495 485 7. 284 37 35 860 858 495 485 7. 285 38 35 860 868 495 485 7. 286 38 35 860 868 495 485 7. 287 39 35 860 860 495 485 7. 288 39 35 860 860 495 485 7. 288 39 35 860 860 495 488 7. 289 38 35 870 860 495 488 7. 290 38 35 870 860 495 488 7. <td< td=""><td>279</td><td>38</td><td>34</td><td>870</td><td>860</td><td>495</td><td>485</td><td>740</td></td<>	279	38	34	870	860	495	485	740
281 37 33 868 858 495 485 7.7 282 38 34 868 858 495 486 7. 283 38 35 860 858 495 485 7. 284 37 35 860 858 495 485 7. 285 38 35 860 868 495 485 7. 286 38 35 860 868 495 485 7. 287 39 35 860 860 495 485 7. 287 39 35 860 860 495 485 7. 288 39 35 860 860 495 485 7. 289 38 35 870 860 495 488 7. 290 38 35 870 860 495 488 7. <t< td=""><td>280</td><td>37</td><td>33</td><td>868</td><td>858</td><td>495</td><td>485</td><td>740</td></t<>	280	37	33	868	858	495	485	740
283 38 35 860 858 495 485 77 284 37 35 860 858 495 485 77 285 38 35 860 868 495 485 77 286 38 35 860 860 495 485 77 287 39 35 860 860 495 485 77 288 39 35 860 860 495 485 77 289 38 35 870 860 495 488 77 289 38 35 870 860 495 488 77 290 38 35 870 860 495 488 77 291 38 35 870 860 495 488 77 291 38 35 870 860 495 488 77 <td< td=""><td></td><td>37</td><td>33</td><td>868</td><td>858</td><td>495</td><td>485</td><td>740</td></td<>		37	33	868	858	495	485	740
284 37 35 860 858 495 485 77 285 38 35 860 868 495 485 77 286 38 35 860 860 495 485 77 287 39 35 860 860 495 485 77 288 39 35 860 860 495 485 77 289 38 35 870 860 495 488 77 289 38 35 870 860 495 488 77 290 38 35 870 860 495 488 77 291 38 35 870 860 495 488 77 291 38 35 870 860 495 488 77 291 38 35 870 860 495 488 77 <td< td=""><td>282</td><td>38</td><td>34</td><td>868</td><td>858</td><td>495</td><td>486</td><td>742</td></td<>	282	38	34	868	858	495	486	742
285 38 35 860 868 495 485 77 286 38 35 860 868 495 485 77 287 39 35 860 860 495 485 77 288 39 35 860 860 495 485 77 289 38 35 870 860 495 488 77 289 38 35 870 860 495 488 77 290 38 35 870 860 495 488 77 291 38 35 870 860 495 488 77 291 38 35 870 860 495 488 77 292 39 35 870 860 495 488 77 293 38 35 870 860 495 488 77 <td< td=""><td>283</td><td>38</td><td>35</td><td>860</td><td>858</td><td>495</td><td>485</td><td>742</td></td<>	283	38	35	860	858	495	485	742
285 38 35 860 868 495 485 77 286 38 35 860 868 495 485 77 287 39 35 860 860 495 485 77 288 39 35 860 860 495 485 77 289 38 35 870 860 495 488 77 290 38 35 870 860 495 488 77 291 38 35 870 860 495 488 77 291 38 35 870 860 495 488 77 292 39 35 870 860 495 488 77 292 39 35 870 860 495 488 77 293 38 35 870 860 495 488 77 <td< td=""><td></td><td>37</td><td>35</td><td>860</td><td>858</td><td>495</td><td>485</td><td>740</td></td<>		37	35	860	858	495	485	740
286 38 35 860 868 495 485 7.7 287 39 35 860 860 495 485 7.7 288 39 35 860 860 495 485 7.7 289 38 35 870 860 495 488 7.7 290 38 35 870 860 495 488 7.7 291 38 35 870 860 495 488 7.7 291 38 35 870 860 495 488 7.7 292 39 35 870 860 495 488 7.7 293 38 35 870 860 495 488 7.7 294 38 35 870 860 495 488 7.7 295 38 35 870 860 495 488 7.	*	38	35	860	868	495	485	740
287 39 35 860 860 495 485 7.7 288 39 35 860 860 495 485 7.7 289 38 35 870 860 495 488 7.7 290 38 35 870 860 495 488 7.7 291 38 35 870 860 495 488 7.7 291 38 35 870 860 495 488 7.7 292 39 35 870 860 495 488 7.7 293 38 35 870 860 495 488 7.7 294 38 35 870 860 495 488 7.7 295 38 35 870 860 495 488 7. 296 37 35 870 860 495 488 7.	*	38	35	860	868	495	485	740
288 39 35 860 860 495 485 7.7 289 38 35 870 860 495 488 7. 290 38 35 870 860 495 488 7. 291 38 35 870 860 495 488 7. 292 39 35 870 860 495 488 7. 293 38 35 870 860 495 488 7. 293 38 35 870 860 495 488 7. 293 38 35 870 860 495 488 7. 294 38 35 870 860 495 488 7. 295 38 35 870 860 495 488 7. 296 37 35 870 860 495 488 7. <t< td=""><td>1</td><td>39</td><td>35</td><td>860</td><td>860</td><td>495</td><td>485</td><td>748</td></t<>	1	39	35	860	860	495	485	748
289 38 35 870 860 495 488 7. 290 38 35 870 860 495 488 7. 291 38 35 870 860 495 488 7. 292 39 35 870 860 495 488 7. 293 38 35 870 860 495 488 7. 294 38 35 870 860 495 488 7. 294 38 35 870 860 495 488 7. 295 38 35 870 860 495 488 7. 296 37 35 870 860 495 488 7. 299 38 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. <td< td=""><td></td><td>39</td><td>35</td><td>860</td><td>860</td><td>495</td><td>485</td><td>742</td></td<>		39	35	860	860	495	485	742
290 38 35 870 860 495 488 7. 291 38 35 870 860 495 488 7. 292 39 35 870 860 495 488 7. 293 38 35 870 860 495 488 7. 294 38 35 870 860 495 488 7. 295 38 35 870 860 495 488 7. 296 37 35 870 860 495 488 7. 297 38 35 870 860 495 488 7. 299 38 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. 300 38 35 870 858 495 488 7. <td< td=""><td>*</td><td>38</td><td>35</td><td>870</td><td>860</td><td>495</td><td>488</td><td>740</td></td<>	*	38	35	870	860	495	488	740
291 38 35 870 860 495 488 7. 292 39 35 870 860 495 488 7. 293 38 35 870 860 495 488 7. 294 38 35 870 860 495 488 7. 295 38 35 870 860 495 488 7. 296 37 35 870 860 495 488 7. 297 38 35 870 860 495 488 7. 299 38 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. 300 38 35 870 860 495 488 7. 301 38 35 870 858 495 488 7. <td< td=""><td>*</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>740</td></td<>	*			-				740
292 39 35 870 860 495 488 7. 293 38 35 870 860 495 488 7. 294 38 35 870 860 495 488 7. 295 38 35 870 860 495 488 7. 296 37 35 870 860 495 488 7. 297 38 35 870 860 495 488 7. 298 37 35 870 860 495 488 7. 298 37 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. 300 38 35 870 858 495 488 7. 301 38 33 870 858 495 488 7. <td< td=""><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>740</td></td<>	*							740
293 38 35 870 860 495 488 7. 294 38 35 870 860 495 488 7. 295 38 35 870 860 495 488 7. 296 37 35 870 860 495 488 7. 297 38 35 870 860 495 488 7. 298 37 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. 300 38 35 870 860 495 488 7. 301 38 35 870 858 495 488 7. 301 38 33 870 858 495 488 7. 302 38 33 870 857 495 483 7. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>740</td></td<>								740
294 38 35 870 860 495 488 7. 295 38 35 870 860 495 488 7. 296 37 35 870 860 495 488 7. 297 38 35 870 860 495 488 7. 298 37 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. 300 38 35 870 858 495 488 7. 301 38 35 870 858 495 488 7. 301 38 33 870 858 495 488 7. 302 38 33 870 857 495 483 7. 303 38 33 870 857 495 483 7. <td< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>740</td></td<>	1							740
295 38 35 870 860 495 488 7. 296 37 35 870 860 495 488 7. 297 38 35 870 860 495 488 7. 298 37 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. 300 38 35 870 858 495 488 7. 301 38 33 870 858 495 488 7. 301 38 33 870 858 495 488 7. 302 38 33 870 857 495 483 7. 303 38 33 870 857 495 483 7. 304 38 34 870 858 495 485 7. <td< td=""><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>740</td></td<>	*							740
296 37 35 870 860 495 488 7. 297 38 35 870 860 495 488 7. 298 37 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. 300 38 35 870 858 495 488 7. 301 38 33 870 858 495 488 7. 301 38 33 870 858 495 488 7. 302 38 33 870 857 495 483 7. 303 38 33 870 857 495 483 7. 304 38 34 870 858 495 485 7. 305 37 33 865 855 495 489 7. <td< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>740</td></td<>	1							740
297 38 35 870 860 495 488 7. 298 37 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. 300 38 35 870 858 495 488 7. 301 38 33 870 858 495 488 7. 301 38 33 870 858 495 488 7. 302 38 33 870 857 495 483 7. 303 38 33 870 857 495 483 7. 304 38 34 870 858 495 485 7. 305 37 33 865 855 495 489 7. 306 38 34 870 859 495 489 7. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>745</td></td<>								745
298 37 35 870 860 495 488 7. 299 38 34 870 860 495 488 7. 300 38 35 870 858 495 488 7. 301 38 33 870 858 495 488 7. 302 38 33 870 857 495 483 7. 303 38 33 870 857 495 483 7. 304 38 34 870 858 495 485 7. 305 37 33 865 855 495 489 7. 306 38 34 870 859 495 489 7. 307 38 34 871 859 495 489 7. 308 38 34 871 859 495 489 7. <td< td=""><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>750</td></td<>	*							750
299 38 34 870 860 495 488 7. 300 38 35 870 858 495 488 7. 301 38 33 870 858 495 488 7. 302 38 33 870 857 495 483 7. 303 38 33 870 857 495 483 7. 304 38 34 870 858 495 485 7. 305 37 33 865 855 495 489 7. 306 38 34 870 859 495 489 7. 307 38 34 871 859 495 489 7. 308 38 34 871 859 495 489 7. 309 38 34 871 859 495 489 7. <td< td=""><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>740</td></td<>	*							740
300 38 35 870 858 495 488 7.3 301 38 33 870 858 495 488 7.3 302 38 33 870 857 495 483 7.3 303 38 33 870 857 495 483 7.4 304 38 34 870 858 495 485 7.4 305 37 33 865 855 495 489 7.4 306 38 34 870 859 495 489 7.4 307 38 34 871 859 495 489 7.4 308 38 34 871 859 495 489 7.4 309 38 34 871 859 495 489 7.4 310 38 34 871 860 495 489 7.4	*							740
301 38 33 870 858 495 488 7.3 302 38 33 870 857 495 483 7.3 303 38 33 870 857 495 483 7.3 304 38 34 870 858 495 485 7.3 305 37 33 865 855 495 489 7.3 306 38 34 870 859 495 489 7.3 307 38 34 871 859 495 489 7.3 308 38 34 871 859 495 489 7.3 309 38 34 871 859 495 489 7.3 310 38 34 871 860 495 489 7.3 311 38 34 872 861 495 489 7.3	*							740
302 38 33 870 857 495 483 7.4 303 38 33 870 857 495 483 7.4 304 38 34 870 858 495 485 7.4 305 37 33 865 855 495 489 7.4 306 38 34 870 859 495 489 7.4 307 38 34 871 859 495 489 7.4 308 38 34 871 859 495 489 7.4 309 38 34 871 859 495 489 7.4 310 38 34 871 859 495 489 7.4 311 38 34 871 860 495 489 7.4 312 38 34 872 861 495 489 7.4								740
303 38 33 870 857 495 483 72 304 38 34 870 858 495 485 72 305 37 33 865 855 495 489 72 306 38 34 870 859 495 489 72 307 38 34 871 859 495 489 72 308 38 34 871 859 495 489 72 309 38 34 871 859 495 489 72 310 38 34 871 860 495 489 72 311 38 34 871 860 495 489 72 312 38 34 872 861 495 489 72 313 38 34 870 860 495 483 72 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>746</td></td<>								746
304 38 34 870 858 495 485 7- 305 37 33 865 855 495 489 7- 306 38 34 870 859 495 489 7- 307 38 34 871 859 495 489 7- 308 38 34 871 859 495 489 7- 309 38 34 871 859 495 489 7- 310 38 34 871 860 495 489 7- 311 38 34 872 861 495 489 7- 312 38 34 872 861 495 489 7- 313 38 34 870 860 495 483 7- 314 38 34 870 860 495 485 7- <td< td=""><td>1</td><td></td><td></td><td>+</td><td></td><td></td><td></td><td>746</td></td<>	1			+				746
305 37 33 865 855 495 489 72 306 38 34 870 859 495 489 72 307 38 34 871 859 495 489 72 308 38 34 871 859 495 489 72 309 38 34 871 859 495 489 72 310 38 34 871 860 495 489 72 311 38 34 872 861 495 489 72 312 38 34 872 861 495 489 72 313 38 34 870 860 495 483 72 314 38 34 870 860 495 485 72 315 38 34 870 860 495 485 72 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>745</td></td<>								745
306 38 34 870 859 495 489 74 307 38 34 871 859 495 489 74 308 38 34 871 859 495 489 74 309 38 34 871 859 495 489 74 310 38 34 871 860 495 489 74 311 38 34 872 861 495 489 74 312 38 34 872 861 495 489 74 313 38 34 870 860 495 483 74 314 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74 <td< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td>740</td></td<>				+				740
307 38 34 871 859 495 489 7.4 308 38 34 871 859 495 489 7.4 309 38 34 871 859 495 489 7.4 310 38 34 871 860 495 489 7.4 311 38 34 872 861 495 489 7.4 312 38 34 872 861 495 489 7.4 313 38 34 870 860 495 483 7.4 314 38 34 870 860 495 485 7.4 315 38 34 870 860 495 485 7.4 315 38 34 870 860 495 485 7.4 315 38 34 870 860 495 485 7.4	1							740
308 38 34 871 859 495 489 74 309 38 34 871 859 495 489 74 310 38 34 871 860 495 489 74 311 38 34 872 861 495 489 74 312 38 34 872 861 495 489 74 313 38 34 870 860 495 483 74 314 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74	1							740
309 38 34 871 859 495 489 74 310 38 34 871 860 495 489 74 311 38 34 872 861 495 489 74 312 38 34 872 861 495 489 74 313 38 34 870 860 495 483 74 314 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74	1							740
310 38 34 871 860 495 489 74 311 38 34 872 861 495 489 74 312 38 34 872 861 495 489 74 313 38 34 870 860 495 483 74 314 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74								740
311 38 34 872 861 495 489 74 312 38 34 872 861 495 489 74 313 38 34 870 860 495 483 74 314 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74			1					740
312 38 34 872 861 495 489 74 313 38 34 870 860 495 483 74 314 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74								745
313 38 34 870 860 495 483 74 314 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74			1					743
314 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74 315 38 34 870 860 495 485 74	1							740
315 38 34 870 860 495 485 7-								740
								740
246 + 27 + 34 + 870 + 960 + 405 + 405 + 7		37	34	870	860	495	485	740
				+				740

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 0С	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед P-40 0C	Температу ра выхлопног о газа после P-40 0C
318	37	34	875	865	495	485	745
319	37	34	875	865	495	485	740
320	37	34	875	865	495	485	745
321	37	34	872	850	495	485	740
322	37	34	872	850	495	485	745
323	37	33	870	850	495	485	742
324	37	34	870	850	495	489	745
325	37	33	870	851	495	488	745
326	37	34	870	851	495	488	745
327	37	33	870	852	495	488	745
328	37	33	868	850	495	488	745
329	37	33	868	850	495	488	745
330	38	34	868	851	495	489	742
331	38	34	868	850	495	489	745
332	37	33	865	850	495	489	745
333	37	33	865	850	495	489	745
334	37	33	865	850	495	489	748
335	37	33	865	850	495	489	748
336	37	33	863	850	495	489	748
337	37	33	865	850	495	487	748
338	37	33	865	850	495	487	748
339	37	33	868	850	495	486	748
340	37	33	868	850	495	486	745
341	37	33	868	850	495	485	750
342	37	33	868	850	495	485	750
343	37	33	868	852	495	485	745
344	37	33	868	852	495	485	748
345	37	33	868	852	495	485	748
346	37	33	868	853	495	488	745
347	37	33	868	852	495	488	745
348	37	33	868	853	495	488	745
349	37	33	868	855	495	488	745
350	37	33	868	855	495	488	745
351	37	33	866	856	495	488	745
352	37	33	862	852	495	488	745
353	37	33	862	850	495	488	745
354	37	33	863	850	495	488	742
355	37	33	863	850	495	488	742
356	37	33	863	850	495	488	742
357	37	33	863	850	493	486	746

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 ОС	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед Р-40 0С	Температу ра выхлопног о газа после P-40 0C
358	37	33	863	850	493	486	745
359	37	33	864	850	493	486	749
360	37	33	864	850	493	486	748
361	37	33	863	850	493	485	745
362	37	33	865	850	493	485	745
363	37	33	865	850	493	485	745
364	37	33	868	850	493	485	742
365	37	33	868	850	493	485	740
366	37	33	868	850	493	485	742
367	37	33	868	850	493	485	745
368	37	33	868	850	493	485	745
369	37	33	868	850	493	485	745
370	37	33	869	851	493	485	745
371	37	33	869	851	493	485	745
372	37	32	869	851	493	485	740
373	37	32	871	852	493	487	740
374	37	32	870	852	493	487	745
375	37	32	870	854	493	487	745
376	36	32	868	853	493	487	745
377	37	34	865	852	493	487	740
378	37	34	862	850	493	487	740
379	37	34	861	850	493	489	735
380	37	34	861	850	493	489	735
381	37	34	862	852	493	489	740
382	37	34	862	852	493	489	740
383	37	34	862	852	493	489	740
384	37	34	862	852	493	489	740
385	37	33	858	850	485	485	740
386	37	33	858	850	486	485	744
387	37	33	858	850	485	485	745
388	37	32	865	852	485	485	746
389	37	32	866	852	485	485	750
390	37	32	866	852	485	485	745
391	37	32	865	852	485	485	744
392	37	32	865	852	485	485	744
393	37	32	865	852	485	485	744
394	38	32	865	852	495	486	745
395	38	32	865	852	495	486	750
396	38	32	865	852	495	486	742
397	38	32	865	852	495	486	742

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 0С	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед Р-40 0С	Температу ра выхлопног о газа после P-40 0C
398	38	33	862	851	495	486	745
399	38	33	862	851	495	486	740
400	38	33	860	850	495	486	745
401	38	33	860	850	495	486	740
402	38	33	860	850	495	486	740
403	38	33	860	850	495	486	740
404	38	33	860	850	495	486	745
405	38	33	860	850	495	486	745
406	38	33	860	850	495	486	742
407	38	33	862	850	495	486	745
408	38	33	862	850	445	486	745
409	38	33	862	850	493	486	745
410	38	33	861	850	493	486	750
411	38	33	862	850	493	486	750
412	38	34	865	852	493	486	740
413	38	34	865	852	493	486	740
414	38	32	861	850	493	486	750
415	38	32	862	850	493	486	748
416	38	32	868	855	493	486	746
417	38	32	868	852	493	485	745
418	38	32	868	852	493	485	750
419	38	32	868	852	493	485	750
420	38	32	863	857	495	490	750
421	38	32	862	850	495	490	750
422	38	32	863	850	495	490	750
423	37	32	862	850	495	490	750
424	37	32	862	850	495	490	750
425	37	32	862	850	495	490	750
426	37	33	863	850	495	490	750
427	37	33	865	850	495	490	745
428	37	33	867	852	495	490	745
429	37	33	867	852	495	490	745
430	37	33	867	852	495	490	745
431	37	33	867	852	495	490	745
432	37	33	867	852	495	490	745
433	37	32	867	852	495	489	748
434	37	33	868	853	495	489	749
435	37	33	868	854	495	489	749
436	37	33	868	855	495	488	748
437	37	33	868	855	495	488	749

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453	37 37 37 37 37 37 38 38 38 37 36	33 33 33 33 33 33 34 37	868 868 868 868 868	855 855 855 855	495 495 495	488	748 745
439 440 441 442 443 444 445 446 447 448 449 450 451 452	37 37 37 37 38 38 38 37 36	33 33 33 33 34 37	868 868 868	855 855	495		745
441 442 443 444 445 446 447 448 449 450 451 452	37 37 37 38 38 37 36	33 33 33 34 37	868 868	855		400	•
442 443 444 445 446 447 448 449 450 451 452	37 37 38 38 37 36	33 33 34 37	868			488	745
443 444 445 446 447 448 449 450 451 452	37 38 38 37 36	33 34 37			495	488	745
444 445 446 447 448 449 450 451 452	38 38 37 36	34 37	868	855	495	488	745
445 446 447 448 449 450 451 452	38 37 36	37		855	495	488	745
446 447 448 449 450 451 452	37 36		868	855	495	488	740
447 448 449 450 451 452	36		868	855	495	488	740
448 449 450 451 452		33	868	857	495	488	742
449 450 451 452	36	34	862	851	495	488	740
450 451 452		34	862	851	495	488	740
451 452	37	33	860	850	495	490	745
452	37	33	860	850	495	490	745
	37	33	860	850	495	490	745
453	37	33	860	850	495	490	745
	37	33	860	850	495	490	745
454	37	33	860	850	495	490	745
455	37	33	860	850	495	490	745
456	37	33	860	850	495	490	745
457	37	33	861	851	495	490	746
458	37	33	862	851	495	490	748
459	37	33	862	852	495	490	749
460	37	34	862	852	495	490	747
461	37	34	862	852	495	490	747
462	37	34	862	852	495	490	747
463	37	34	862	852	495	490	750
464	37	34	862	852	505	503	747
465	37	37	860	850	505	504	750
466	38	33	858	850	505	505	730
467	37	34	856	850	508	510	755
468	33	26	840	830	508	510	755
469	30				508	510	760
470					510	500	765
471					470	458	610
472					470	455	545
					475	440	500
473					450	415	
474					430		/11 11 1
475 476					405	360	400 320

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 ОС	Температу ра нитрозного газа под сетками Р 12/2 0С	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед Р-40 0С	Температу ра выхлопног о газа после P-40 0C
477					275	240	210
478						130	150
		Oc	танов техн	ологичесн	кого проц	ecca	
479		1	1	T	1	ı	1
480							
481							
482							
483							
484							
485							
486							
487							
488							
489							
490							
491							
492							
493							
494							
495							
496							
497							
498							
499							
500							
501							
502							
503							
504							
505							
506							
507							
508	36	31	860	850	488	488	750
509	36	31	860	850	488	488	750
510	36	31	860	850	488	488	750

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 0С	Температу ра нитрозного газа под сетками Р 12/2 0C	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед P-40 0C	Температу ра выхлопног о газа после P-40 0C
511	36	31	868	850	488	488	750
512	36	31	868	850	488	488	750
513	36	31	865	850	488	488	750
514	36	31	865	850	488	488	750
515	36	31	865	850	488	488	750
516	36	31	865	850	488	488	750
517	36	31	865	850	488	488	750
518	36	31	865	850	488	488	750
519	36	31	868	850	488	488	748
520	36	31	868	850	488	488	748
521	36	31	865	850	495	486	748
522	36	31	865	850	495	486	748
523	35	30	865	850	495	486	748
524	35	30	865	850	495	486	748
525	35	31	865	850	495	486	748
526	35	31	865	850	495	486	748
527	35	31	865	850	495	486	745
528	35	30	865	850	495	487	750
529	35	30	863	850	495	487	750
530	35	30	863	850	495	487	750
531	35	30	865	850	495	487	745
532	35	30	866	850	495	487	745
533	35	30	868	850	495	487	750
534	35	30	868	850	495	487	750
535	35	30	868	850	495	487	750
536	35	30	868	850	495	487	750
537	35	31	866	850	495	487	749
538	36	31	865	850	495	487	745
539	36	31	862	850	495	487	750
540	36	31	862	850	495	487	750
541	36	31	866	850	495	486	750
542	36	31	866	850	495	486	750
543	35	31	866	850	495	486	750
544	35	31	866	850	495	486	750
545	35	31	863	850	495	486	750
546	35	31	863	850	495	486	750
547	36	31	865	850	495	486	750
548	36	31	865	850	495	486	750
549	36	31	865	850	495	486	750
550	36	31	865	850	495	486	750

551 552	35		газа под сетками Р 12/1 0С	нитрозного газа под сетками Р 12/2 0С	выхлопног о газа после Т-53 ОС	выхлопног о газа перед Р-40 ОС	выхлопног о газа после P-40 0C
552		31	865	850	495	486	750
	35	30	867	850	495	486	750
553	35	30	868	850	495	486	750
554	35	30	865	850	490	488	750
555	35	30	865	850	495	488	750
556	35	30	868	850	495	488	750
557	35	31	870	850	495	488	750
558	35	31	870	850	495	488	750
559	35	30	870	850	495	488	750
560	35	30	870	850	495	488	750
561	36	30	871	850	495	488	750
562	36	30	869	850	495	488	750
563	36	31	868	850	495	488	748
564	36	31	868	850	495	488	745
565	36	31	868	850	495	488	752
566	36	31	866	850	495	488	752
567	36	31	862	850	495	488	745
568	36	31	861	850	495	488	742
569	36	31	862	850	495	488	745
570	36	31	860	850	495	488	740
571	36	31	861	850	495	488	748
572	36	31	861	850	495	488	748
573	36	31	862	850	495	488	745
574	36	31	862	850	495	488	746
575	36	31	862	850	495	488	746
	37	32	870	850	495	488	750
576 577	37	32	872	853	495	488	750
	37	32	872	853	495	488	750
578 579	35	32	872	855	495	488	750
580	35	32	872	855	495	488	750
580	35	32	871	855	495	488	750
	35	32	871	852	495	488	750
582	35	32	871	852	495	488	750
583	35	32	870	852	495	488	750
584	35	31	871	851	495	488	750
585	35	31	870	852	495	488	750
586	35	31	870	852	495	488	730
587	35	31	870	852	495	488	745
588	35	31	850	851	495	488	745
589 590	35	31	868	851	495	488	745

Временная метка	Вода на Э-14/1 М3/ч	Вода на Э-14/2 М3/ч	Температу ра нитрозного газа под сетками Р 12/1 0С	Температу ра нитрозного газа под сетками Р 12/2 ОС	Температу ра выхлопног о газа после Т-53 0С	Температу ра выхлопног о газа перед P-40 0C	Температу ра выхлопног о газа после P-40 0C
591	35	31	869	850	495	488	745
592	35	31	869	852	495	488	748
593	35	31	869	852	495	488	748
594	35	31	869	852	495	488	750
595	35	31	870	853	495	488	748
596	35	31	870	853	495	488	748
597	35	31	870	854	495	488	748
598	35	31	870	854	495	488	750
599	35	31	870	854	495	488	750
600	37	33	865	865	495	488	750
601	37	33	865	865	495	488	750
602	36	31	865	865	495	488	750
603	36	31	865	865	495	488	750
604	35	32	865	865	495	488	750
605	35	32	865	865	495	488	750
606	36	32	870	852	495	488	745
607	36	32	870	852	495	488	745
608	36	32	870	852	495	488	750
609	36	31	868	851	495	488	750
610	36	31	869	851	495	488	750
611	36	31	871	851	495	488	748
612	36	31	868	850	495	488	748
613	36	31	868	850	495	488	748
614	36	31	867	850	495	488	748
615	36	31	867	850	495	488	748
616	36	31	869	850	495	488	748
617	36	31	870	850	495	488	749
618	36	31	870	850	495	488	745
619	36	31	870	850	495	488	745
620	36	31	870	850	495	488	745
621	36	31	870	850	495	488	745
622	36	31	870	850	495	488	745
623	36	31	870	850	495	488	745