МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет» (ТвГТУ)

		УТВЕРЖДАЮ
Прорект	ор по	учебной работе
		Э.Ю. Майкова
«	>>	2019 г.

РАБОЧАЯ ПРОГРАММА

дисциплины части, формируемой участниками образовательных отношений, Блока 1 «Дисциплины (модули)» «Методы и средства цифровой обработки информации»

Направление подготовки магистров — 09.04.01 Информатика и вычислительная техника

Направленность (профиль) – Информационное и программное обеспечение автоматизированных систем

Типы задач профессиональной деятельности – производственнотехнологический, проектный, научно-исследовательский

Форма обучения – очная

Факультет информационных технологий Кафедра «Электронные вычислительные машины» Рабочая программа дисциплины соответствует ОХОП подготовки магистров в части требований к результатам обучения по дисциплине и учебному плану.

Разработчик программы: доцент кафедры ЭВМ, к.э.н.	И.С. Комаров
Программа рассмотрена и одобрена на « <u>06</u> » <u>марта</u> 2019 г.	
Заведующий кафедрой	А.Р. Хабаров
Согласовано:	
Начальник учебно-методического отдела УМУ	Д.А. Барчуков
Начальник отдела комплектования зональной научной библиотеки	О.Ф. Жмыхова

1. Цели и задачи дисциплины

Целью изучения дисциплины «Методы и средства цифровой обработки информации» является ознакомление студентов с современными методами и программами по обработкес трехмерной графической информации.

Задачами дисциплины являются:

- научить осуществлять выбор математического и программного обеспечения для решения задач обработки и создания объектов компьютерной 3D-графики;
- выработать у учащегося способность применять выбранный вид программного обеспечения для работы с 3D-графикой.

2. Место дисциплины в структуре ОП

Дисциплина относится к части, формируемой участниками образовательных отношений Блока 1 ОП ВО. Для изучения курса требуются знания, умения и навыки, полученные студентами при изучении дисциплины «Компьютерная графика».

Знания, полученные при освоении курса, применяются магистрантами в будущей профессиональной деятельности.

3. Планируемые результаты обучения по дисциплине

3.1. Планируемые результаты обучения по дисциплине

Компетенция, закрепленная за дисциплиной в ОХОП:

ПК-3 Способен применять методы компьютерной графики для обработки и формирования изображений.

Индикаторы компетенции, закреплённые за дисциплиной в ОХОП:

- ИПК-3.1. Осуществляет выбор математического и программного обеспечения для решения задач обработки и создания объектов компьютерной графики.
- ИПК-3.2. Применяет один из видов программного обеспечения для обработки графической информации.

Показатели оценивания индикатора достижения компетенции: ИПК-3.1:

Знать:

31: Основные виды специализированного ПО по созданию объектов компьютерной графики.

Уметь:

У1: Сделать обоснованный выбор соответствующего ПО для решения поставленной задачи.

Иметь опыт практической подготовки:

ПП1: В анализе текущей задачи в области компьютерной графики и выбора оптимального инструментария для её решения.

ИПК-3.2.:

Знать:

32: Основные принципы и порядок работы с прикладными пакетами программного обеспечения в области компьютерной графики.

Уметь:

У2: Использовать специализированное программное обеспечение при создании компьютерной графики.

Иметь опыт практической подготовки:

ПП2: В создании графических трёхмерных объектов в специализированных программных пакетах.

3.2. Технологии, обеспечивающие формирование компетенций

Проведение лекционных занятий, выполнение лабораторных работ.

4. Трудоемкость дисциплины и виды учебной работы

Таблица 1. Распределение трудоемкости дисциплины по видам учебной работы

Вид учебной работы	Зачетные единицы	Академические часы
Общая трудоемкость дисциплины	2	72
Аудиторные занятия (всего)		20
В том числе:		
Лекции		10
Практические занятия (ПЗ)		не предусмотрены
Лабораторные работы (ЛР)		10
Самостоятельная работа обучающихся		52
(всего)		
В том числе:		
Курсовая работа		не предусмотрена
Курсовой проект		не предусмотрен
Расчетно-графические работы		не предусмотрены
Реферат		не предусмотрен
Другие виды самостоятельной работы: - подготовка к защите лабораторных работ		30
Текущий контроль успеваемости и промежуточная аттестация (зачёт)		22
Практическая подготовка при реализации дисциплины (всего)		10
В том числе:		

Практические занятия (ПЗ)	не предусмотрены
Лабораторные работы (ЛР)	10
Курсовая работа	не предусмотрена
Курсовой проект	не предусмотрен

5. Структура и содержание дисциплины.

5.1 Структура дисциплины.

Таблица 2. Модули (разделы) дисциплины, трудоемкость в часах и виды учебной работы

№	Наименование	Труд-ть	Лекции	Практич.	Лаб.	Сам.
	модуля	часы		занятия	работы	работа
1	Среда разработки трехмерной графики и анимации Blender. Настройка внешнего вида и стартового файла	4	1	-	1	2
2	Редактор 3D Viewport (сцена) в Blender	6	1	-	1	4
3	Базовые трансформации в Blender	8	1	-	1	6
4	Объектный режим и режим редактирования	8	1	-	1	6
5	Коллекция исходных встроенных объектов (примитивов) в редакторе Blender	6	1	ı	1	4
6	Экструдирование, как один из основных инструментов построения трёхмерных изображений	10	1	-	1	8
7	Подразделение объектов	8	1	-	1	6
8	Модификаторы	8	1	-	1	6
9	Сглаживание объектов в Blender	6	1	-	1	4
10	Материалы и текстуры	8	1	-	1	6
	Всего на дисциплину	72	10	-	10	52

5.2. Содержание учебно-образовательных модулей

Модуль 1. Среда разработки трехмерной графики и анимации Blender. Настройка внешнего вида и стартового файла

Понятие процесса 3D-моделирования. Знакомство с редактором 3-мерного моделирования Blender. Окно стартового интерфейса и его элементы: панель меню, панель инструментов, строка состояния, редакторы 3D Viewport, Outliner, Properties, Timeline и их назначение. Общие принципы работы в Blender. Настройка интерфейса редактора под индивидуальные потребности пользователя и выбор языка интерфейса. Изменение местоположения и масштаба редакторов. Дублирование окон редакторов. Выбор и изменение темы общего интерфейса. Настройка стартового файла Blender.

Модуль 2. Редактор 3D Viewport (сцена) в Blender

Основные элементы, внешний вид, настройка, управление объектами и камерой. Камера и переключение видов сцены из камеры. Режим перспективы и ортогонального изображения. Управление 3D-видом с помощью кнопок редактора 3D Viewport.

Модуль 3. Базовые трансформации в Blender

Выбор действия в панели инструментов редактора 3D Viewport и первичное перемещение, вращение и масштабирование объекта с помощью указателя мыши. Точные изменения (трансформации) с помощью инструментов редактора Properties (вкладка Object).

Модуль 4. Объектный режим и режим редактирования

Понятие «объект», основные элементы объекта (вершины, ребра, грани). Объектный режим (Object Mode) и режим редактирования (Edit Mode) и их особенности. Панель выбора режима редактирования и панель выбора элементов объекта для редактирования в окне 3D Viewport.

Модуль 5. Коллекция исходных встроенных объектов (примитивов) в редакторе Blender

Понятие «примитив» (Mesh-объект). Назначение примитивов. Выбор встроенных примитивов в Blender. Базовая трансформация исходных свойств примитивов и трансформация примитивов. Объединение примитивов.

Модуль 6. Экструдирование, как один из основных инструментов построения 3D-изображений

Понятие экструдирования. Основные инструменты панели экструдирования в режиме Edit Mode. Особенности применения экструдирования к вершинам, ребрам и граням объекта.

Модуль 7. Подразделение объектов

Инструмент Subdivide, как основной инструмент для разделения ребер и граней mesh-объектов на части. Вызов и настройка. Инструменты Loop Cut and Slide, knife, Bevel, Connect Vertex Path и особенности их применения при процессе подразделения объекта.

Модуль 8. Модификаторы

Понятие модификатор в Blender и его суть. Доступ к списку модификаторов в навигационной панели редактора Properties. Модификатор Boolean его суть и операции Пересечение (Intersect), объединение (Union) и разность (Difference). Модификатор Mirror, его суть и применение.

Модуль 9. Сглаживание объектов в Blender

«Каркасность» объектов и необходимость их сглаживания. Простые инструменты сглаживания Shade Smooth и Shade Flat. Инструменты Smooth Vertices и Smooth Laplacian. Особенность сглаживание объектов через применение модификаторов. Модификаторы сглаживания Smooth, Smooth Verteces, Corrective Smooth и Laplacian Smooth.

Модуль 10. Материалы и текстуры

Понятие материала в Blender. Базовые принципы работы с материалами. Инструменты работы с материалами: добавление материала к объекту, удаление, закрепление, сохранение. Изменение базовых свойств. Добавление нескольких материалов к объекту. Предварительный просмотр результатов. Понятие текстура и её отличие от материала. Редактор шейдеров (Shader Editor) в Blender и работа с текстурами. Добавление текстур и изменение. Наложение нескольких текстур.

5.3 Лабораторные работы

Таблица 3. Тематика, форма лабораторных работ (ЛР) и их трудоемкость

№ пп.	Модули. Цели лабораторных работ	Примерная тематика занятий и форма их проведений	Трудоем- кость в часах
1.	Модуль 1 Цель: Знакомство с интерфейсом редактора Blender, назначением отдельных окон и настройкой. Изучение базовых действий	Трансформация интерфейса 3D-редактора пол личные предпочтения пользователя.	1

2.	Модуль 2 Цель: Детальное знакомство с редактором просмотра, управлением объектами, сценой и камерой	В редакторе произвести трансформацию стартового объекта (куб) по заданию преподавателя.	1
3.	Модуль 3 Цель: Изучение инструментов базовых трансформаций объектов	1. В редакторе произвести трансформацию стартового объекта (куб) по заданию преподавателя. 2. Трансформировать получившуюся сцену (вид), точно по заданию преподавателя. 3. Сохранить проект.	1
4.	Модуль 4 Цель: Изучение основных элементов объекта и процесса их изменения	В редакторе произвести поэлементную трансформацию стартового объекта (куб) в объект, указанный преподавателем.	1
5.	Модуль 5 Цель: Изучение понятия «примитив» и его назначение и трансформация. Коллекция примитивов. Примитив, как стартовый этап построения 3D-модели	1. В редакторе создать из нескольких примитивов указанный преподавателем объект. Каждый примитив трансформируется отдельно, при необходимости дублируется и объединяется в единый объект. 2. Полученный объект позиционируется в редакторе в точном положении, заданном преподавателем.	1
6	Модуль 6 Цель: Изучение инструмента «экструдирование» и его модификаций, как базового инструмента трансформации	Создание путём применения инструмента экструдирования и его модификаций к отдельным элементам исходного объекта (куба) сложных объектов.	1
7	Модуль 7 Цель: Изучение процесса подразделения 3D-объектов и основных инструментов подразделения	Создание сложных объектов путем трансформаций нескольких исходных примитивов с последующим их объединением в единый объект.	1
9	Модуль 8 Цель: Изучение понятия «модификатор», особенностей воздействия модификаторов на объект и встроенного набора модификаторов Blender Модуль 9	Создание сложных многосоставных моделей с использованием модификаторов.	1
,	ттодушь		

	Цель: Изучение процедуры	Создание нескольких сфер из	1
	сглаживания объектов и основных	исходных примитивов (куб) с	
	инструментов сглаживания	использованием индивидуальных	
		инструментов сглаживания с	
		последующим точным	
		позиционированием объектов в	
		сцене.	
10	Модуль 10		
	Цель: Изучение понятий	Создание произвольного объекта	1
	«материал» и «текстура», цели их	(например, сферы), с	
	применения и способов применения	последующим применением к	
	и настройки	ней инструмента выбора	
		материала, текстуры и источника	
		освещения.	

5.4. Практические занятия

Учебным планом практические занятия не предусмотрены.

6. Самостоятельная работа обучающихся и текущий контроль успеваемости

6.1. Цели самостоятельной работы

Формирование способностей к самостоятельному познанию и обучению, поиску литературы, обобщению, оформлению и представлению полученных результатов, их критическому анализу, поиску новых и неординарных решений, аргументированному отстаиванию своих предложений, умений подготовки выступлений и ведения дискуссий.

6.2 Организация и содержание самостоятельной работы

Самостоятельная работа заключается в изучении отдельных тем курса по заданию преподавателя по рекомендуемой им учебной литературе, в подготовке к лабораторным работам, к текущему контролю успеваемости, экзамену.

При защите лабораторной работы студент показывает отчёт о выполненной работе. Докладывает и аргументированно защищает результаты выполненной работы, отвечая при этом на вопросы преподавателя, убеждая его в том, что работа выполнена верно, цели работы полностью достигнуты.

В случае пропуска занятия студент должен взять тематику занятия и задание на лабораторную работу у преподавателя, изучить и отработать материал в часы самостоятельной работы: написать конспект пропущенной лекции и выполнить лабораторную работу.

Тематика самостоятельной работы имеет профессионально-ориентированный характер и непосредственную связь рассматриваемых

вопросов с будущей профессиональной деятельностью выпускника, в том числе научно-исследовательской деятельностью.

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Основная литература по дисциплине

- 1. Кузьменко А.А. и др., Технология трехмерного моделирования и текстурирования объектов в Blender 3d и 3d Мах. Учебное пособие / А.А. Кузьменко, А.Д. Гладченков, В.А. Шкаберин, А.В. Аверченков. Москва: Флинта, 2019. 142 с. ISBN 978-5-9765-4216-7. URL: https://ibooks.ru/bookshelf/364432/reading (дата обращения: 29.05.2022). Текст: электронный.
- 2. Горячкин Б.С., Белоногов И.Б., Практикум для редактирования и моделирования 3d графики на основе программного продукта BLENDER 2.92, Москва: Издательство: ООО "Издательство "Спутник+", 2021. 28c. ISBN: 978-5-9973-5943-0 URL: https://elibrary.ru/item.asp?id=46153927 (дата обращения: 29.05.2022). Текст: электронный.
- 3. Серова М., Учебник-самоучитель по трехмерной графике в Blender 3D. Моделирование, дизайн, анимация, спецэффекты., Москва: Солон-Пресс, 2021., 272с. ISBN 978-5-91359-438-9.
- 4. Прахов А., Blender: 3D-моделирование и анимация. Руководство для начинающих, Санкт-Петербург: Издательство: БХВ-Петербург, 2009. 272с. ISBN: 978-5-9775-0393-8 URL: https://elibrary.ru/item.asp?id=21552655 (дата обращения: 29.05.2022). Текст: электронный.

7.2 Дополнительная литература по дисциплине

1. Колошкина, И. Е. Компьютерная графика: учебник и практикум для вузов / И. Е. Колошкина, В. А. Селезнев, С. А. Дмитроченко. — 3-е изд., испр. и доп. — Москва: Издательство Юрайт, 2022. — 233 с. — (Высшее образование). — ISBN 978-5-534-12341-8. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/490997 (дата обращения: 29.05.2022)

7.3. Методические материалы

1. Кузьменко А.А. и др., Технология трехмерного моделирования в Blender 3d: лабораторный практикум, Москва: Флинта, 2018. - 79 с. - ISBN 978-5-9765-4015-6 - URL: https://e.lanbook.com/book/113463 (дата обращения: 29.05.2022). - Текст: электронный.

7.4. Программное обеспечение

- 1. Операционная система Microsoft Windows: лицензии № ICM-176609 и № ICM-176613 (Azure Dev Tools for Teaching).
- 2. Microsoft Office 2007 Russian Academic: OPEN No Level: лицензия № 41902814.
- 3. Графический редактор трёхмерного моделирования Blender. https://www.blender.org/.

7.5. Специализированные базы данных, справочные системы, электронно-библиотечные системы, профессиональные порталы в Интернет

- 1. Pecypcы: http://lib.tstu.tver.ru/header/obr-res
- 3. ЭБС «Лань»: https://e.lanbook.com/
- 4. ЭБС «Университетская библиотека

онлайн»: http://www.biblioclub.ru/

- 5. 3 Georgia Special S
- 6. Электронная образовательная платформа «Юрайт» (ЭБС «Юрайт»): http://urait.ru/
- 7. Научная электронная библиотека eLIBRARY: http://elibrary.ru/
- 8. Информационная система «ТЕХНОРМАТИВ». Конфигурация «МАКСИМУМ» : сетевая версия (годовое обновление) : [нормативнотехнические, нормативно-правовые и руководящие документы (ГОСТы, РД, СНиПы и др.]. Диск 1, 2, 3, 4. М. :Технорматив, 2014. (Документация для профессионалов). CD. Текст : электронный. 119600 р. (ID=105501).

УМК размещен: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/ 145846.

8. Материально-техническое обеспечение

Кафедра Электронных вычислительных машин имеет аудитории лабораторных проведения лекционных И занятий дисциплине; ПО специализированный учебный класс ДЛЯ проведения компьютерных практикумов самостоятельной работы, оснащенный современной компьютерной офисной техникой, программным необходимым И обеспечением.

9. Оценочные средства для проведения промежуточной аттестации

9.1. Оценочные средства для проведения промежуточной аттестации в форме экзамена

Учебным планом экзамен не предусмотрен.

9.2. Оценочные средства промежуточной аттестации в форме зачета

- 1. Шкала оценивания промежуточной аттестации «зачтено», «не зачтено».
 - 2. Вид промежуточной аттестации в форме зачёта.

Вид промежуточной аттестации устанавливается преподавателем по согласованию с заведующим кафедрой по результатам текущего контроля знаний обучающегося без дополнительных контрольных испытаний;

3. Критерии проставления зачёта при промежуточной аттестации без выполнения дополнительного итогового контрольного испытания.

Оценка «зачтено» выставляется обучающемуся при условии выполнения и защиты им всех практических работ, предусмотренных в Программе.

9.3. Оценочные средства промежуточной аттестации в форме курсового проекта или курсовой работы

Учебным планом курсовая работа или курсовой проект не предусмотрена.

10. Методические рекомендации по организации изучения дисциплины

Студенты перед началом изучения дисциплины ознакомлены с системами кредитных единиц и балльно-рейтинговой оценки.

Студенты, изучающие дисциплину, обеспечиваются электронными изданиями или доступом к ним, учебно-методическим комплексом по дисциплине.

11. Внесение изменений и дополнений в рабочую программу дисциплины

Содержание рабочих программ дисциплин ежегодно обновляется протоколами заседаний кафедры по утвержденной «Положением о структуре, содержании и оформлении рабочих программ дисциплин по образовательным программам, соответствующим ФГОС ВО с учетом профессиональных стандартов» форме.