МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет» (ТвГТУ)

УТ	<i>ВЕРЖДА</i>	Ю
Пр	оректор	
ПО	учебной	работе
		Э.Ю. Майкова
«	>>	 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины обязательной части Блока 1 «Дисциплины (модули)» «Гидравлика»

Направление подготовки бакалавров – 20.03.01 Техносферная безопасность Направленность (профиль) – Безопасность технологических процессов и про-изводств

Типы задач профессиональной деятельности: экспертиза, надзорная и инспекционно-аудиторская

Форма обучения – очная

Факультет природопользования и инженерной экологии Кафедра «Гидравлика, теплотехника и гидропривод» Рабочая программа дисциплины соответствует ОХОП подготовки бакалавров в части требований к результатам обучения по дисциплине и учебному плану.

Разработчик программы: зав. каф. ГТиГП

А.Л. Яблонев

Программа рассмотрена и одобрена на заседании кафедры ГТиГП

« 05 » марта 2021 г., протокол № <u>7</u>

Заведующий кафедрой ГТиГП

А.Л. Яблонев

Согласовано:

Начальник учебно-методического отдела УМУ

Д.А. Барчуков

Начальник отдела комплектования зональной научной библиотеки

О.Ф. Жмыхова

1. Цели и задачи дисциплины

Целью изучения дисциплины «Гидравлика» является: формирование знаний о свойствах жидкостей, находящихся в покое и движении; взаимодействии жидкостей с ограждающими конструкциями; законах, режимах и условиях движения жидкостей.

Задачами дисциплины являются:

формирование знаний о жидкостях, их свойствах, условиях равновесия и движения;

формирование умений производить гидромеханические расчеты силы давления жидкости на плоские наклонные и криволинейные стенки постоянного радиуса кривизны;

формирование знаний о режимах движения жидкостей;

формирование умений определять необходимый гидродинамический напор в системе с учетом и без учета гидравлических сопротивлений;

формирование знаний о способах расчета последовательно и параллельно соединенных трубопроводов.

2. Место дисциплины в структуре ОП

Дисциплина «Гидравлика» относится к обязательной части дисциплин Блока 1 «Дисциплины (модули)». Для изучения курса требуются знания дисциплин «Математика», «Физика», «Теоретическая механика».

Приобретенные знания в рамках данной дисциплины могут быть использованы в экспертизе, надзорной и инспекционно-аудиторской работе, при написании раздела, связанного с безопасностью водопользования выпускной квалификационной работы.

3. Планируемые результаты обучения по дисциплине

3.1. Планируемые результаты обучения по дисциплине (модулю) Компетенция, закрепленная за дисциплиной в ОХОП:

ОПК-2: Способен обеспечивать безопасность человека и сохранение окружающей среды, основываясь на принципах культуры безопасности и концепции риск-ориентированного мышления.

Индикаторы компетенции, закрепленной за дисциплиной в ОХОП:

ИОПК-2.1. Знать основы технологических процессов, работы машин, устройств и оборудования, применяемые сырье и материалы с учетом специфики деятельности работодателя.

Показатели оценивания индикаторов достижения компетенции:

- 31. Основные физические свойства жидкостей;
- 32. Основные законы равновесия и движения жидкостей;
- 33. Основные энергетические параметры движущихся жидкостей.

Уметь:

- У.1. Производить расчеты гидростатического давления в любой точке жидкости;
- У.2. Определять силу гидростатического давления на плоские наклонные и криволинейные стенки;
- У.3. Производить гидромеханические расчеты сети с определением требуемого напора.

3.2. Технологии, обеспечивающие формирование компетенций

Проведение лекционных и практических занятий, выполнение расчетнографической работы.

4. Трудоемкость дисциплины и виды учебной работы

Таблица 1. Распределение трудоемкости дисциплины по видам учебной работы

таолица т. Распределение трудоемкости дисци	Зачетные	Академические
Вид учебной работы	единицы	часы
Общая трудоемкость дисциплины	3	108
Аудиторные занятия (всего)		45
В том числе:		
Лекции		15
Практические занятия (ПЗ)		30
Лабораторные работы (ЛР)		не предусмотрены
Самостоятельная работа обучающихся (всего)		63
В том числе:		
Курсовая работа		не предусмотрена
Курсовой проект		не предусмотрен
Расчетно-графические работы		38
Реферат		не предусмотрен
Другие виды самостоятельной работы: (подготовка к		9
лекциям и практическим занятиям)		,
Текущий контроль успеваемости и промежуточная ат-		16
тестация (зачет)		10
Практическая подготовка при реализации дисци-		30
плины (всего)		30
В том числе:		
Практические занятия (ПЗ)		30
Лабораторные работы (ЛР)		не предусмотрены
Курсовая работа		не предусмотрена
Курсовой проект		не предусмотрен

5. Структура и содержание дисциплины

5.1. Структура дисциплины

Таблица 2. Модули дисциплины, трудоемкость в часах и виды учебной работы

№	Наименование модуля	Трудо- емк. часы	Лек- ции	Прак- тич. занятия	Лаб. прак- тикум	Сам. работа
1	Предмет «Гидравлика», жид- кость и ее основные физиче- ские свойства	8	1	2	1	5
2	Основные понятия и законы гидростатики	13	2	4		7
3	Определение силы гидростатического давления на плоские наклонные стенки	15	2	4	ı	9
4	Определение силы гидростатического давления на криволинейные стенки постоянного радиуса кривизны	15	2	4	.1	9
5	Основные понятия и определения гидродинамики	8	1	2	_	5
6	Гидродинамический напор и режимы движения жидкостей	11	2	4	ı	5
7	Уравнения Д.Бернулли для движущейся жидкости	15	2	4	_	9
8	Потери напора и гидравлические сопротивления	15	2	4	_	9
9	Основы расчета трубопроводов	8	1	2	_	5
Всего на дисциплину:		108	15	30	_	63

5.2. Содержание дисциплины

МОДУЛЬ 1 «Предмет «Гидравлика», жидкость и ее основные физические свойства»

История развития и задачи «Гидравлика». Понятие жидкости, капельные и газообразные жидкости. Идеальная и реальная жидкости. Основные физические свойства жидкостей. Текучесть и цветность жидкости. Плотность, удельный вес и удельный объем жидкостей. Вязкость жидкости. Тепловое расширение жидкостей. Сжимаемость жидкостей. Свойство жидкостей растворять в себе газы. Кавитация.

МОДУЛЬ 2 «Основные понятия и законы гидростатики»

Определение гидростатики и ее задача. Силы, действующие на жидкость. Единичные и массовые силы. Сила гидростатического давления и гидростатическое давление. Свойства гидростатического давления. Приведенное дифференциальное уравнение равновесия жидкости. Уравнение поверхности равного давления. Основное уравнение гидростатики. Понятие гидростатического напора. Атмосферное, абсолютное, избыточное давление. Эпюры давления. Пьезометрическая плоскость.

Приборы для определения давления. Механические манометры и их особенности. Закон Паскаля. Гидростатический парадокс Паскаля.

.МОДУЛЬ 3 «Определение силы гидростатического давления на плоские наклонные стенки»

Понятие центра тяжести площадки и центра давления. Аналитический расчет и направление силы гидростатического давления на плоские наклонные стенки. Графоаналитическое определение силы гидростатического давления на плоские наклонные стенки. Понятие площади эпюры давления. Относительное расхождение при аналитическом и графоаналитическом способе определения силы гидростатического давления на плоские наклонные стенки.

МОДУЛЬ 4 «Определение силы гидростатического давления на криволинейные стенки постоянного радиуса кривизны»

Аналитическое определение силы гидростатического давления на криволинейные симметричные поверхности постоянного радиуса кривизны. Реальное и фиктивное тело давления. Определение объема тела давления. Графоаналитический способ определения силы гидростатического давления на криволинейные симметричные поверхности постоянного радиуса кривизны. Случай с наличием реального и фиктивного тела давления при определении силы гидростатического давления на криволинейные симметричные поверхности постоянного радиуса кривизны. Закон Архимеда.

МОДУЛЬ 5 «Основные понятия и определения гидродинамики»

Раздел гидродинамики и ее задачи. Установившееся и неустановившееся, равномерное и неравномерное движение жидкости. Линия тока, поток, гидравлическая струя. Напорный и безнапорный потоки. Местная, мгновенная и средняя скорость потока. Эпюра скоростей потока. Объемный расход и средняя скорость потока. Смоченный периметр и гидравлический радиус. Уравнение неразрывности потока.

МОДУЛЬ 6 «Гидродинамический напор и режимы движения жидкостей»

Понятие гидродинамического напора. Геометрический, пьезометрический и скоростной напоры. Скоростная трубка (трубка Пито) и прибор Пито-Прандтля. Режимы движения жидкостей. Число Рейнольдса. Критическая скорость движения жидкостей и критическое число Рейнольдса. Характер распределения скоростей в потоке при ламинарном режиме движения жидкостей. Характер распределения скоростей в потоке при турбулентном режиме движения жидкостей.

МОДУЛЬ 7 «Уравнения Д.Бернулли для движущейся жидкости»

Уравнение Д.Бернулли для элементарной струйки идеальной жидкости. Диаграмма уравнения Д.Бернулли. Пьезометрическая, скоростная линия и линия полного гидродинамического напора. Геометрическая и энергетическая трактовка слагаемых уравнения Д.Бернулли. Уравнение Д.Бернулли для элементарной струйки реальной жидкости. Уравнение Д.Бернулли для потока реальной жидкости. Понятие коэффициента Кориолиса.

МОДУЛЬ 8 «Потери напора и гидравлические сопротивления»

Понятие и виды потерь напора. Потери напора по длине (путевые потери) и их отображение на графике напоров. Абсолютная эквивалентная шероховатость, относительная шероховатость и относительная гладкость трубопроводов. Формула Дарси-Вейсбаха для определения потерь напора по длине. График И.Никурадзе. Область вязкостного сопротивления на графике И.Никурадзе. Область гидравлически гладких труб на графике И.Никурадзе. Область доквадратичного сопротивления на графике И.Никурадзе. Область квадратичного сопротивления на графике И.Никурадзе. Местные потери напора и их расчет по формуле Вейсбаха. Коэффициенты местных сопротивлений для резкого расширения и резкого сужения трубопровода.

МОДУЛЬ 9 «Основы расчета трубопроводов»

Гидравлически длинные и гидравлически короткие трубопроводы. Случаи истечения жидкости в атмосферу и под уровень. Последовательное соединение трубопроводов. Параллельное соединение трубопроводов.

5.3. Лабораторные работы

Учебным планом не предусмотрены

5.4. Практические занятия

Таблица 3. Тематика практических занятий и их трудоемкость

№ п/п	Модули. Цели ПЗ	Примерная тематика занятий и форма их проведения	Трудо- емкость в часах
1	Модуль 1 Цель: изучение основных физических свойств жидкости.	Практическое занятие. Предмет «Гидравлика», жидкость и ее основные физические свойства.	2
2	Модуль 2 Цель: изучение основного уравнения гидростатики, закона Паскаля, гидростатического парадокса Паскаля, понятия гидростатического напора.	Практическое занятие. Основные понятия и законы гидростатики.	4
3	Модуль 3 Цель: изучение аналитического и графоаналитического методов определения силы гидростатического давления на плоские наклонные стенки.	Практическое занятие. Определение силы гидростатического давления на плоские наклонные стенки.	4
4	Модуль 4 Цель: изучение аналитического и графоаналитического методов определения силы гидростатического давления на криволинейные стенки постоянного радиуса кривизны.	Практическое занятие. Определение силы гидростатического давления на криволинейные стенки постоянного радиуса кривизны.	4

5	Модуль 5 Цель: изучение основных понятий и определений гидродинамики для напорного и безнапорного потоков.	Практическое занятие. Основные понятия и определения гидродинамики.	2
6	Модуль 6 Цель: изучение понятия гидродинамического напора и определение режимов движения жидкости с помощью числа Рейнольдса.	Практическое занятие. Гидродинамический напор и режимы движения жидкостей.	4
7	Модуль 7 Цель: изучение уравнений Д.Бернулли лоя элементарной струйки идеальной жидкости, элементарной струйки реальной жидкости и потока реальной жидкости.	Практическое занятие. Уравнения Д.Бернулли для движущейся жидкости.	4
8	Модуль 8 Цель: изучение конструкции и расчета потерь напора по длине трубопровода и на местных сопротивлениях.	Практическое занятие. Потери напора и гидравлические сопротивления.	4
9	Модуль 9 Цель: изучение особенностей расчета по- следовательного и параллельного соедине- ний трубопроводов.	Практическое занятие. Основы расчета трубопроводов.	2

6. Самостоятельная работа обучающихся и текущий контроль их успеваемости

6.1. Цели самостоятельной работы

Формирование способностей к самостоятельному познанию и обучению, поиску литературы, обобщению, оформлению и представлению полученных результатов, их критическому анализу, поиску новых и неординарных решений, аргументированному отстаиванию своих предложений, умению подготовки выступлений и ведения дискуссий.

6.2. Организация и содержание самостоятельной работы

Самостоятельная работа заключается в изучении отдельных тем курса по заданию преподавателя по рекомендуемой им учебной литературе, в подготовке к лекциям и практическим занятиям, к текущему контролю успеваемости, выполнении расчетно-графической работы и подготовке к зачету. Качество выполнения самостоятельной работы оценивается при текущем контроле знаний путем устного опроса.

После вводных лекций, в которых обозначается содержание дисциплины, ее проблематика и практическая значимость, студентам выдается задание на расчетнографическую работу в соответствии с вариантами, номера которых выдает преподаватель, разработанными на кафедре ГТиГП. Общая тема расчетно-графической работы «Гидравлические расчеты инженерных систем». В состав расчетнографической работы входит решение 6-ти задач: 1 — на основное уравнение гидростатики; 2 — на определение силы гидростатического давления на плоскую наклонную стенку; 3 — на определение силы гидростатического давления на криволинейную стенку постоянного радиуса кривизны; 4 и 5 — на использование уравнений Д. Бернулли без учета потерь напора; 6 — на использование уравнения Д. Бернулли с

учетом потерь напора (короткий трубопровод). Расчетно-графическая работа оформляется рукописно на белых листах бумаги формата А4 с одной стороны листа. Все рисунки, схемы и чертежи выполняются вручную карандашом на миллиметровой бумаге. Работа снабжается титульным листом, на котором обозначаются фамилии студента и преподавателя, номер варианта, наименование темы, шифр группы и год. Все задачи проверяются преподавателем по мере изучения соответствующих модулей и защищаются путем устного опроса.

В рамках дисциплины проводится 15 практических занятий, которые оцениваются посредством устного опроса. Максимальная оценка за каждое практическое занятие – 5 баллов, минимальная – 2 балла.

Посещение всех занятий обязательно. В случае неудовлетворительной оценки при контроле усвоения лекционного материала по какому-либо модулю, студент имеет право отработать тему по незачтенному модулю в последующем путем устных ответов на заданные преподавателем вопросы. Оценивание в этом случае проводится по содержанию, глубине и качеству ответов.

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

- 1. Чугаев, Р.Р. Гидравлика: (техн. механика жидкости): учебник для гидротехн. спец. вузов / Р.Р. Чугаев. 5-е изд.; репр. М.: Бастет, 2008. 672 с.: ил. Текст: непосредственный. ISBN 978 -5 903178 07 0: 670 р. (ID=73284-8)
- 2. Лапшев, Н.Н. Гидравлика: учебник для вузов по напр. "Стр-во" / Н.Н. Лапшев. 2-е изд.; испр. М.: Академия, 2008. 269 с.: ил. (Высшее профессиональное образование) (Строительство). Библиогр.: с. 265. Текст: непосредственный. ISBN 978-5-7695-5278-6: 150 р. (ID=73485-29)
- 3. Лапшев, Н.Н. Гидравлика: учебник для вузов / Н.Н. Лапшев. М.: Академия, 2007. 269 с.: ил. (Высшее профессиональное образование). Библиогр.: с. 256. Текст: непосредственный. ISBN 978-5-7695-2704-3: 243 р. (ID=65523-18)
- 4. Чугаев, Р.Р. Гидравлика: (техническая механика жидкости): учебник для гидротехн. спец. вузов / Р.Р. Чугаев. 4-е изд.; доп. и перераб. Л.: Энергоиздат, 1982. 672 с.: ил. Текст: непосредственный. 2 р. 50 к. (ID=79464-94)
- 5. Коноплев, Е.Н. Виртуальная лаборатория гидромеханики, гидравлических машин и гидроприводов : демо-версия / Е.Н. Коноплев; Тверской гос. техн. ун-т, Каф. ГТиГ. Тверь : ТвГТУ, 2005. Сервер. Текст : электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/78066. (ID=78066-1)
- 6. Коноплев, Е.Н. Виртуальная лаборатория гидромеханики, гидравлических машин и гидроприводов : презентация / Е.Н. Коноплев; Тверской гос. техн. ун-т, Каф. ГТиГ. Тверь : ТвГТУ, 2005. Сервер. Текст : электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/78065. (ID=78065-1)

7.2. Дополнительная литература

- 1. Учебно-методический комплекс дисциплины "Гидравлика" направления подготовки 20.03.01 Техносферная безопасность. Профиль: Безопасность технологических процессов и производств: ФГОС 3+ / Каф. Гидравлика, теплотехника и гидропривод; сост. С.С. Посадкова. 2022. (УМК). Текст: электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/132007. (ID=132007-1)
- 2. Крестин, Е.А. Решебник по гидравлике : учебное пособие для вузов / Е.А. Крестин. 2-е изд. ; доп. и испр. Санкт-Петербург : Лань, 2022. ЭБС Лань. Текст : электронный. Режим доступа: по подписке. Дата обращения: 07.07.2022. ISBN 978-5-8114-8751-6. URL: https://e.lanbook.com/book/200246 . (ID=148029-0)
- 3. Гидравлика и гидравлические машины. Лабораторный практикум: учебное пособие / Н.Г. Кожевникова [и др.]. Санкт-Петербург [и др.]: Лань, 2022. (Учебники для вузов. Специальная литература). ЭБС Лань. Текст: электронный. Режим доступа: по подписке. Дата обращения: 11.08.2022. ISBN 978-5-8114-2157-2. URL: https://e.lanbook.com/book/212381. (ID=101073-0)
- 4. Штеренлихт, Д.В. Гидравлика: учебник / Д.В. Штеренлихт. 5-е изд.; стер. Санкт-Петербург [и др.]: Лань, 2022. (Учебники для вузов. Специальная литература). ЭБС Лань. Текст: электронный. Режим доступа: по подписке. Дата обращения: 08.08.2022. ISBN 978-5-8114-1892-3. URL: https://e.lanbook.com/book/212051. (ID=110093-0)
- 5. Гидравлика: учебник и практикум для вузов / В.А. Кудинов [и др.]; под редакцией В.А. Кудинова. 4-е изд.; доп. и перераб. Москва: Юрайт, 2022. (Высшее образование). Образовательная платформа Юрайт. Текст: электронный. Режим доступа: по подписке. Дата обращения: 07.07.2022. ISBN 978-5-534-01120-3. URL: https://urait.ru/bcode/489356. (ID=150446-0)
- 6. Крестин, Е.А. Задачник по гидравлике с примерами расчетов : учебное пособие для студентов ВПО по направлению "Строительство" / Е.А. Крестин, И.Е. Крестин. 5-е изд. ; стер. Санкт-Петербург [и др.] : Лань, 2021. (Учебники для вузов. Специальная литература). ЭБС Лань. Текст : электронный. Режим доступа: по подписке. Дата обращения: 26.07.2022. ISBN 978-5-8114-7345-8. URL: https://e.lanbook.com/book/158956. (ID=106058-0)

7.3. Методические материалы

- 1. Решения типовых гидравлических задач: учебное пособие / составители: М.А. Скоробогатов, Е.Н. Коноплев, Ф.В. Качановский, Н.П. Курбатов, С.С. Посадкова, А.А. Андрианова; Тверской гос. техн. ун-т. Тверь: ТвГТУ, 2019. 223 с. Текст: непосредственный. ISBN 978-5-7995-1038-1: 546 р. (ID=135112-67)
- 2. Решения типовых гидравлических задач : учебное пособие / Тверской гос. техн. ун-т ; составители: М.А. Скоробогатов, Е.Н. Коноплев, Ф.В. Качановский, Н.П. Курбатов, С.С. Посадкова, А.А. Андрианова. Тверь : ТвГТУ, 2019. Сервер. Текст : электронный. ISBN 978-5-7995-1038-1 : 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/135025 . (ID=135025-1)

- 3. Приложение к рабочей программе дисциплины "Гидравлика" направления подготовки 20.03.01 Техносферная безопасность. Профиль: Безопасность технологических процессов и производств. Заочная форма обучения, курс 3: в составе учебно-методического комплекса / Каф. Гидравлика, теплотехника и гидропривод. Тверь: ТвГТУ, 2017. (УМК-РП). Сервер. Текст: электронный. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/132009. (ID=132009-0)
- 4. Оценочные средства промежуточной аттестации: экзамен по дисциплине "Гидравлика" направления подготовки 20.03.01 Техносферная безопасность. Профиль: Безопасность технологических процессов и производств: в составе учебно-методического комплекса / Каф. Гидравлика, теплотехника и гидропривод; разраб.: С.С. Посадкова, А.А. Фомина. Тверь: ТвГТУ, 2017. (УМК-В). Сервер. Текст: электронный. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/132010. (ID=132010-0)
- 5. Методические указания по выполнению лабораторных работ по дисциплине "Гидравлика" направления подготовки 20.03.01 Техносферная безопасность. Профиль: Безопасность технологических процессов и производств: в составе учебно-методического комплекса / Каф. Гидравлика, теплотехника и гидропривод. Тверь: ТвГТУ, 2017. (УМК-М). Сервер. Текст: электронный. (ID=132030-0)
- 6. Конспект лекций по дисциплине "Гидравлика" направления подготовки 20.03.01 Техносферная безопасность. Профиль: Безопасность технологических процессов и производств: в составе учебно-методического комплекса / Каф. Гидравлика, теплотехника и гидропривод. Тверь: ТвГТУ, 2017. (УМК-Л). Сервер. Текст: электронный. (ID=132029-0)
- 7. Экзаменационные вопросы по дисциплине "Гидравлика" для студентов специальности 280102 "Безопасность технологических процессов и производств": в составе учебно-методического комплекса / Тверской гос. техн. ун-т, Каф. ГТиГ; сост. Ф.В. Качановский. Тверь, 2013. (УМК-В). Сервер. Текст: электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/98022. (ID=98022-1)
- 8. Протоколы лабораторных работы по дисциплине "Гидравлика" для студентов специальности 280102 "Безопасность технологических процессов и производств": в составе учебно-методического комплекса / Тверской гос. техн. унт, Каф. ГТиГ; сост. Ф.В. Качановский. Тверь, 2013. (УМК-ЛР). Сервер. Текст : электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/98020. (ID=98020-1)
- 9. Конспект лекций по дисциплине "Гидравлика" для студентов специальности 280102 "Безопасность технологических процессов и производств": в составе учебно-методического комплекса / Тверской гос. техн. ун-т, Каф. ГТиГ; сост. Ф.В. Качановский. Тверь, 2013. (УМК-Л). Сервер. Текст: электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/98019. (ID=98019-1)
- 10.Задачи для расчетно-графической работы по дисциплине "Гидравлика" для студентов специальности 280102 "Безопасность технологических процессов и

- производств": в составе учебно-методического комплекса / Тверской гос. техн. ун-т, Каф. ГТиГ; сост. Ф.В. Качановский. Тверь, 2013. (УМК-РГР). Сервер. Текст : электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/98021. (ID=98021-1)
- 11.Барекян, А.Ш. Лабораторный курс гидравлики: учеб. пособие для студентов вузов по напр. подготовки (спец.) 280300, 280400 / А.Ш. Барекян, Е.Н. Коноплев; Тверской гос. техн. ун-т, Каф. ГТиГ. 1-е изд. Тверь: ТвГТУ, 2008. Сервер. Текст: электронный. ISBN 978-5-7995-0430-4: 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/73333. (ID=73333-1)
- 12.Барекян, А.Ш. Лабораторный курс гидравлики: учеб. пособие для студентов вузов по напр. подготовки (спец.) 280300, 280400 / А.Ш. Барекян, Е.Н. Коноплев, М.А. Скоробогатов; Тверской гос. техн. ун-т, Каф. ГТиГ. 1-е изд. Тверь: ТвГТУ, 2008. 151 с.: ил. Библиогр.: с. 149. Текст: непосредственный. ISBN 978-5-7995-0430-4: 148 р. 50 к. (ID=73314-119)
- 13.Барекян, А.Ш. Гидравлика: курс лекций / А.Ш. Барекян; Тверской гос. техн. ун-т. Тверь: ТвГТУ, 2005. Сервер. Текст: электронный. [б. ц.]. (ID=56877-1)
- 14. Карелин, В.С. Методическое пособие по выполнению лабораторных работ по гидравлике, гидравлическим машинам и гидроприводу / В.С. Карелин, Е.Н. Коноплев; Тверской гос. техн. ун-т. Тверь : ТвГТУ, 2004. Сервер. Текст : электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/81558. (ID=81558-1)
- 15.Барекян, А.Ш. Примеры решения задач по гидравлике : учеб. пособие / А.Ш. Барекян, А.К. Челышев; Тверской гос. техн. ун-т. 3-е изд. Тверь : ТвГТУ, 2003. 123 с. Библиогр. : с. 121 122. ISBN 5-7995-0239-6 : 66 р. 60 к. (ID=15922-14)
- 16.Барекян, А.Ш. Гидравлика: прим. решения задач с вариантами заданий на выполнение курсовых и расчетно-граф. работ: учеб. пособие / А.Ш. Барекян, А.К. Челышев; Тверской гос. техн. ун-т. 2-е изд.; перераб. и доп. Тверь: ТвГТУ, 2003. 172 с.: ил. Библиогр.: с. 171. Текст: непосредственный. ISBN 5-7995-0220-5: [б. ц.]. (ID=12161-14)
- 17. Гидравлика: метод. указ. по оформлению и выполнению расчет.-граф. работ по гидравлике для спец.: 29.03, 29.05, 29.06, 29.10, 25.13, 31.11, 09.05, 17.01, 17.05 / Тверской гос. техн. ун-т, Каф. ГТиГ; сост.: А.Ш. Барекян, А.К. Челышев. Тверь: ТвГТУ, 1994. 35 с.: ил. Текст: непосредственный. 475-00. (ID=1387-9)
- 18.Гидравлика: метод. указ. к лаб. работам для студ. спец. 29.03, 29.04, 29.05, 29.06, 29.10, 25.13, 31.11, 09.05, 17.01, 17.05 / Тверской политехн. ин-т, Каф. ГТиГ; сост.: А.Ш. Барекян, А.К. Челышев [и др.]. Тверь: ТвеПИ, 1994. 48 с.: Ил. 0-40. (ID=1281-9)
- 19.Методические указания к курсовой работе по гидравлике, гидромашинам и гидроприводу для инженерно-технических специальностей дневного и вечернего обучения / сост.: Р.А. Власова, Е.С. Розин; Калининский политехн. ин-т, Каф. Гидравлика и гидравлические машины. Калинин, 1985. 39 с. Текст: непосредственный. [б. ц.]. (ID=60176-14)

7.4. Программное и коммуникационное обеспечение

Операционная система Microsoft Windows: лицензии № ICM-176609 и № ICM-176613 (Azure Dev Tools for Teaching).

Microsoft Office 2007 Russian Academic: OPEN No Level: лицензия № 41902814.

7.5. Специализированные базы данных, справочные системы, электронно-библиотечные системы, профессиональные порталы в Интернет

ЭБС и лицензионные ресурсы ТвГТУ размещены:

- 1. Ресурсы: https://lib.tstu.tver.ru/header/obr-res
- 2. ЭΚΤΒΓΤУ: https://elib.tstu.tver.ru/MegaPro/Web
- 3. ЭБС "Лань": https://e.lanbook.com/
- 4. ЭБС "Университетская библиотека онлайн": https://www.biblioclub.ru/
- 5. 9EC «IPRBooks»: https://www.iprbookshop.ru/
- 6. Электронная образовательная платформа "Юрайт" (ЭБС «Юрайт»): https://urait.ru/
- 7. Научная электронная библиотека eLIBRARY: https://elibrary.ru/
- 8. Информационная система "ТЕХНОРМАТИВ". Конфигурация "МАКСИМУМ": сетевая версия (годовое обновление): [нормативно-технические, нормативноправовые и руководящие документы (ГОСТы, РД, СНиПы и др.]. Диск 1,2,3,4. М.: Технорматив, 2014. (Документация для профессионалов). CD. Текст: электронный. 119600 р. (105501-1)
- 9. База данных учебно-методических комплексов: https://lib.tstu.tver.ru/header/umk.html

УМК размещен: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/132007

8. Материально-техническое обеспечение дисциплины

При изучении дисциплины «Гидравлика» используются современные средства обучения: наглядные пособия, электронные плакаты, презентации, компьютерные фильмы.

Возможна демонстрация лекционного материала с помощью мультимедийного проектора.

9. Оценочные средства для проведения промежуточной аттестации

9.1. Оценочные средства для проведения промежуточной аттестации в форме экзамена

Учебным планом экзамен по дисциплине не предусмотрен.

9.2. Оценочные средства для проведения промежуточной аттестации в форме зачета

1. Шкала оценивания промежуточной аттестации в форме зачета – «зачтено», «не зачтено».

- 2. Вид промежуточной аттестации в форме зачета по результатам текущего контроля знаний и умений обучающегося без дополнительных контрольных испытаний.
- 3. Оценка «зачтено» выставляется обучающемуся при условии выполнения им всех контрольных мероприятий, предусмотренных в Программе (зачетов по всем практическим занятиям, защищенной расчетно-графической работы).

9.3. Оценочные средства для проведения промежуточной аттестации в форме курсового проекта или курсовой работы

Учебным планом по дисциплине курсовой проект и курсовая работа не предусмотрены.

10. Методические рекомендации по организации изучения дисциплины

Студенты очной формы обучения перед началом изучения дисциплины должны быть ознакомлены с возможностью получения экзаменационной оценки по результатам текущей успеваемости, а также планом выполнения расчетнографической работы. Варианты задания на расчетно-графическую работу выдается на 2...4 неделе семестра.

В учебный процесс рекомендуется внедрение субъект-субъектной педагогической технологии, при которой в расписании каждого преподавателя определяется время консультаций студентов по закрепленному за ним модулю дисциплины.

Рекомендуется обеспечить студентов, изучающих дисциплину, электронными учебниками, учебно-методическим комплексом по дисциплине, включая методические указания к выполнению курсовой работы, а также всех видов самостоятельной работы.

11. Внесение изменений и дополнений в рабочую программу дисциплины

Кафедра ежегодно обновляет содержание рабочих программ дисциплин, которые оформляются протоколами заседаний кафедры, форма которых утверждена Положением о рабочих программах дисциплин, соответствующих ФГОС ВО.