МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет» $(Tв\Gamma TY)$

‹ ‹	>>		2021 г.
			Э.Ю. Майкова
по уч	чебной	і работе	
Прор	ректор		
УТВ	ЕРЖД	АЮ	

РАБОЧАЯ ПРОГРАММА

дисциплины часть, формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)»

«Прикладное программное обеспечение»

Направление подготовки бакалавров 27.03.04 Управление в технических системах

Направленность (профиль) – Автоматизация и управление технологическими процессами и производствами

Типы задач профессиональной деятельности – проектноконструкторский, сервисно-эксплуатационный

Форма обучения – очная, заочная

Факультет информационных технологий Кафедра «Автоматизация технологических процессов»

-	Рабочая программа дисциплины соответствует ОХП подготовки	бакалавров
в ча	асти требований к результатам обучения по дисциплине и учебно	му плану.

Разработчик программы: доцент кафедры АТП	П.К. Кузин
Программа рассмотрена и одобрена на заседании кафедры А «» 2021 г., протокол №	ΔΤΠ
Заведующий кафедрой АТП	Б.И. Марголис
Согласовано: Начальник учебно-методического отдела УМУ	Д.А. Барчуков
Начальник отдела комплектования зональной научной библиотеки	О.Ф. Жмыхова

1. Цель и задачи дисциплины

Целью изучения дисциплины «Прикладное программное обеспечение» является подготовка студентов к профессиональной деятельности в области моделирования, исследования, расчета, анализа и синтеза систем управления с использованием прикладного программного обеспечения.

Задачами дисциплины являются:

- изучение технологий компьютерного моделирования с использованием прикладного программного обеспечения;
- овладение методами анализа и синтеза систем управления с использованием прикладного программного обеспечения;
- формирование практических навыков построения компьютерных моделей систем управления и их анализа с использованием прикладного программного обеспечения.

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к дисциплинам части, формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)».

Для изучения курса требуются знания, полученные студентами при изучении дисциплин: «Математика», «Теория автоматического управления», «Моделирование систем управления».

Приобретенные знания в рамках данной дисциплины могут быть использованы в дальнейшем при выполнении выпускной квалификационной работы.

3. Планируемые результаты обучения по дисциплине

3.1. Планируемые результаты обучения по дисциплине

Компетенции, закрепленные за дисциплиной в ОХОП:

ПК-1. Способен обеспечить функционирование, обслуживание, сопровождение, повышение эффективности и надежности технического, программного, метрологического, информационного и организационного обеспечений АСУТП.

Индикаторы компетенций, закреплённых за дисциплиной в ОХОП:

ИПК-1.2. Обеспечивает функционирование обслуживание, сопровождение, повышение эффективности программного обеспечения АСУТП.

Показатели оценивания индикаторов достижения компетенций Знать:

- 31. Современный инструментарий прикладного программного обеспечения (ППО) и программно-аппаратных средств для решения задач автоматизации и управления технологическими объектами.
- 32. Возможности применения ППО для решения задач моделирования систем управления.

Уметь:

- У1. Использовать ППО для решения задач анализа и синтеза систем управления.
- У2. Производить построение моделей систем управления с использованием компьютерных технологий.

УЗ. Разрабатывать программную документацию в соответствии с требованиями ЕСПД.

Иметь опыт практической подготовки:

ПП1. Решать задачи повышения эффективности использования программного обеспечения АСУТП.

3.2. Технологии, обеспечивающие формирование компетенций

Проведение лекционных и лабораторных занятий, самостоятельная работа под руководством преподавателя.

4. Трудоемкость дисциплины и виды учебной работы ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 1а. Распределение трудоемкости дисциплины по видам учебной работы

Вид учебной работы	Зачетных единиц	Академических часов
Общая трудоемкость дисциплины	4	144
Аудиторные занятия (всего)		45
В том числе:		
Лекции		15
Практические занятия (ПЗ)		не предусмотрены
Лабораторные работы (ЛР)		30
Самостоятельная работа (всего)		99=63+36 (экз.)
В том числе:		
Курсовая работа		не предусмотрена
Курсовой проект		не предусмотрен
Расчетно-графические работы		не предусмотрены
Реферат		не предусмотрен
Другие виды самостоятельной работы:		
- изучение теоретической части дисциплины		43
- подготовка к защите лабораторных работ		20
Текущий контроль успеваемости и промежуточная		36 (экз.)
аттестация (экзамен)		30 (3K3.)
Практическая подготовка при реализации дисцип-		30
лины (всего)		50
В том числе:		
Практические занятия (ПЗ)		не предусмотрены
Лабораторные работы (ЛР)		30
Курсовая работа		не предусмотрена
Курсовой проект		не предусмотрен

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 1б. Распределение трудоемкости дисциплины по видам учебной работы

Вид учебной работы	Зачетных единиц	Академических часов
Общая трудоемкость дисциплины	4	144
Аудиторные занятия (всего)		10
В том числе:		
Лекции		4
Практические занятия (ПЗ)		не предусмотрены
Лабораторные работы (ЛР)		6
Самостоятельная работа (всего)		134=125+9 (экз.)

В том числе:	
Курсовая работа	не предусмотрена
Курсовой проект	не предусмотрен
Расчетно-графические работы	не предусмотрены
Реферат	не предусмотрен
Другие виды самостоятельной работы:	
- изучение теоретической части дисциплины	70
- подготовка к защите лабораторных работ	30
- выполнение контрольных работ	25
Текущий контроль успеваемости и промежуточная	9 (экз.)
аттестация (экзамен)	9 (9K3.)
Практическая подготовка при реализации дисцип-	6
лины (всего)	0
В том числе:	
Практические занятия (ПЗ)	не предусмотрены
Лабораторные работы (ЛР)	6
Курсовая работа	не предусмотрена
Курсовой проект	не предусмотрен
Практические занятия (ПЗ)	не предусмотрены

5. Структура и содержание дисциплины 5.1. Структура дисциплины ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 2а. Модули дисциплины, трудоемкость в часах и виды учебной работы

№	Наименование модуля	Труд-ть, часы	Лекции	Практич. занятия	Лаборат. работы	Самостоят. работа
1	Корреляционный, регрес- сионный и гармонический анализ данных в Excel	44	4		8	20+12 (экз.)
2	Анализ качества систем управления технологиче- скими процессами в MathCad и Octave	56	7		14	23+12 (экз.)
3	Решение задач оптимизации в Excel и Octave	44	4		8	20+12 (экз.)
	Всего на дисциплину	144	15		30	63+36 (экз.)

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 2б. Модули дисциплины, трудоемкость в часах и виды учебной работы

№	Наименование модуля	Труд-ть, часы	Лекции	Практич. занятия	Лаборат. работы	Самостоят. работа
1	Корреляционный, регрессионный и гармонический анализ данных в Excel	15				15
2	Анализ качества систем управления технологиче- скими процессами в MathCad и Octave	50	2		4	40+4 (экз.)
3	Решение задач оптими- зации в Excel и Octave	79	2		2	70+5 (экз.)
	Всего на дисциплину	144	4		6	125+9 (экз.)

5.2. Содержание дисциплины

Модуль 1 «Корреляционный, регрессионный и гармонический анализ данных в Excel»

Две основные задачи теории корреляции. Корреляционный и регрессионный анализ данных в Excel. Дискретное преобразование Фурье, быстрое преобразование Фурье. Гармонический анализ периодических сигналов в Excel.

Модуль 2 «Анализ качества систем управления технологическими процессами в MathCAD и Octave»

Анализ устойчивости систем автоматического управления (САУ) в MathCAD. Вычисление показателей качества САУ в Octave.

Модуль 3 «Решение задач оптимизации в Excel и Octave»

Постановка задачи оптимизации. Решение задачи линейного программирования в Excel и Octave. Решение задачи целочисленного программирования в Excel. Решение задачи параметрической оптимизации системы автоматического управления в Octave.

5.3. Лабораторные работы ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица За. Лабораторные работы и их трудоемкость

Порядковый номер модуля. Цели лабораторных работ	Наименование лабораторных работ	Трудо- емкость в часах
Модуль 1 Цель: приобретение навыков использования ППО Excel для корреляционного, регрессионного и гармонического анализа данных.	Корреляционный анализ данных в Excel. Построение однофакторных и многофакторных регрессионных моделей в Excel. Гармонический анализ данных в Excel.	8
Модуль 2 Цель: приобретение навыков использования ППО MathCAD для анализа устойчивости САУ; разработка алгоритма и программы для вычисления показателей качества САУ в Octave.	Оценка устойчивости САУ по критериям устойчивости Михайлова и Найквиста в MathCAD. Разработка программы для вычисления показателей качества САУ в Octave.	14
Модуль 3 Цель: овладение методами использования инструментария ППО Excel и Octave для решения задач оптимизации систем управления.	Решение задач линейного и целочисленного программирования в Excel. Решение задач линейного программирования в Octave. Локализация локальных минимумов и поиск глобального минимума в среде Octave. Параметрическая оптимизация ПИД — регулятора в Octave.	8

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 3б. Лабораторные работы и их трудоемкость

Порядковый номер модуля. Цели лабораторных работ	Наименование лабораторных работ	Трудо- емкость в часах
Модуль 2	Разработка программы для вычисления	
Цель: разработка алгоритма и про-	показателей качества САУ в Octave.	4
граммы для вычисления показате-		4
лей качества САУ в Octave.		
Модуль 3	Локализация локальных минимумов и	
Цель: овладение методами исполь-	поиск глобального минимума в среде Ос-	
зования инструментария ППО Ос-	tave.	2
tave для решения задач оптимиза-	Параметрическая оптимизация ПИД –	
ции систем управления.	регулятора в Octave.	

5.4. Практические занятия

Практические занятия учебным планом не предусмотрены.

6. Самостоятельная работа обучающихся и текущий контроль успеваемости

6.1. Цели самостоятельной работы

Формирование способностей к самостоятельному познанию и обучению, поиску литературы, обобщению, оформлению и представлению полученных результатов, их критическому анализу.

6.2. Организация и содержание самостоятельной работы

Самостоятельная работа заключается в изучении отдельных тем курса по заданию преподавателя по рекомендуемой им учебной литературе, в подготовке к лабораторным занятиям, защите отчетов по лабораторным работам, подготовке к текущему контролю успеваемости, экзамену.

Выполнение всех лабораторных работ обязательно.

Студентам заочной формы обучения во время установочной сессии выдается задание на контрольную работу. Контрольную работу студенты-заочники выполняют самостоятельно. Защита отчета по контрольной работе производится посредством устного собеседования во время экзаменационной сессии.

Тема контрольной работы: «Использование ППП Octave для анализа влияния параметров ПИД-регулятора на качество САУ» (по вариантам).

7. Учебно-методическое и информационное обеспечение дисциплины 7.1. Основная литература по дисциплине

- 1. Орлов, С.А. Технологии разработки программного обеспечения: разработка сложных программных систем: учеб.пособие для вузов по напр. подготовки бакалавров и магистров по спец. "Информатика и вычисл. техника": в составе учебно-методического комплекса / С.А. Орлов. Москва [и др.]: Питер, 2002. 464 с. (Учебник для вузов) (УМК-У). ISBN 5-94723-145-X: 125 р. (ID=11278-3)
- 2. Орлов, С.А. Программная инженерия. Технологии разработки программного обеспечения: учебник для вузов по спец. "Программное обеспечение

вычислительной техники и и автоматизированных сисем" напр. подготовки дипломир. специалистов "Информатика и вычислительная техика" / С.А. Орлов. - 5-е изд.; доп. - Санкт-Петербург [и др.]: Питер, 2017. - 639 с. - (Учебник для вузов). - Текст: непосредственный. - ISBN 978-5-496-01917-0: 1485 р. 90 к. - (ID=114491-6)

7.2. Дополнительная литература по дисциплине

- 1. Системное и прикладное программное обеспечение: лабораторный практикум. Направление подготовки 01.03.02 Прикладная математика и информатика. Профиль подготовки «Математическое моделирование». Бакалавриат / составители И.А. Журавлёва, П.К. Корнеев; Северо-Кавказский федеральный университет.-Ставрополь: Северо-Кавказский федеральный университет, 2017.-ЭБС Лань. Текст: электронный. Режим доступа: по подписке. Дата обращения: 07.07.2022. URL: https://e.lanbook.com/book/155253. (ID=147213-0)
- 2. Иванова, Н.Ю. Системное и прикладное программное обеспечение: учеб. пособие / Н.Ю. Иванова, В.Г. Маняхина; Моск. гос. пед. ун-т. Москва: Московский гос. пед. ун-т, 2011. ЭБС Лань. Текст: электронный. Режим доступа: по подписке. Дата обращения: 07.07.2022. ISBN 978-5-4263-0078-1. URL: https://e.lanbook.com/books/element.php?pl1_id=63305. (ID=111595-0)
- 3. Влацкая, И. В. Проектирование и реализация прикладного программного обеспечения: учебное пособие/И. В. Влацкая, Н. А. Заельская, Н. С. Надточий.— Оренбург: ОГУ, 2015. 118 с. ISBN 978-5-7410-1238-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/98065 (дата обращения: 27.09.2022). Режим доступа: для авториз. пользователей. (ID=150425-0)
- 4. Белугина, С.В. Разработка программных модулей программного обеспечения для компьютерных систем. Прикладное программирование: учебное пособие / С.В. Белугина. Санкт-Петербург [и др.]: Лань, 2020. ЭБС Лань. Текст: электронный. Режим доступа: по подписке. Дата обращения: 07.07.2022. ISBN 978-5-8114-4496-0. URL: https://e.lanbook.com/book/133920. (ID=145564-0)
- 5. Бойко, Г. М. Практикум по освоению прикладного программного обеспечения: учебное пособие/Г. М. Бойко. Железногорск: СПСА, 2017 Часть 2–2017. 55 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/170730 (дата обращения: 27.09.2022). Режим доступа: для авториз. пользователей. (ID=150424-0)

7.3. Методические материалы

- 1. Учебно-методический комплекс дисциплины "Прикладное программное обеспечение" направления подготовки 27.03.04 Управление в технических системах. Профиль: Управление и информатика в технических системах:ФГОС 3+ / Каф. Автоматизация технологических процессов; сост. П.К. Кузин. Тверь, 2022. (УМК). Текст: электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/90521. (ID=90521-1)
- 2. Фонд оценочных средств дисциплины по выбору студента "Прикладное программное обеспечение" направления подготовки 27.03.04 Управление в

технических системах. Профиль: Управление и информатика в технических системах: в составе учебно-методического комплекса / Каф. Автоматизация технологических процессов; сост. П.К. Кузин. - Тверь, 2017. - (УМК-В). - Текст: электронный. - Режим доступа: с разрешения преподавателя. - 0-00. - (ID=94417-1)

- 3. Экзаменационные билеты по курсу "Прикладное программное обеспечение": в составе учебно-методического комплекса / разраб. О.М. Григорьева; Тверской гос. техн. ун-т, Каф. АТП. Тверь: ТвГТУ, 2010. (УМК-Э). Сервер.-Текст: электронный. 0-00. URL: https://elib.tstu.tver.ru/ MegaPro/GetDoc/Megapro/105120 . (ID=105120-1)
- 4. Концептуальные и логические модели для построения автоматизированных систем управления: метод.указ. к лаб. работам для студентов спец. 220301, 200401, 200402. Ч. 1: Структурные модели / Тверской гос. техн. ун-т, Каф. АТП; сост. Н.И. Бодрина. Тверь:ТвГТУ, 2008. 16 с. Библиогр.: с. 16. Текст: непосредственный. [б. ц.]. (ID=75325-3)
- 5. Концептуальные и логические модели для построения автоматизированных систем управления: метод.указ. к лаб. работам для студентов спец. 220301, 200401, 200402. Ч. 2: Объектные модели / Тверской гос. техн. ун-т, Каф. АТП; сост. Н.И. Бодрина. Тверь: ТвГТУ, 2008. 16 с. Библиогр.: с. 16. Текст: непосредственный. [б. ц.]. (ID=75326-3)
- 6. Расширенное описание лекционного курса по дисциплине "Прикладное программное обеспечение": в составе учебно-методического комплекса / разраб. О.М. Григорьева; Тверской гос. техн. ун-т, Каф. АТП. Тверь: ТвГТУ, 2010. (УМК-М). Сервер. Текст: электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/105119. (ID=105119-1)
- 7. Вопросы к экзамену по дисциплине "Прикладное программное обеспечение": в составе учебно-методического комплекса / разраб. О.М. Григорьева; Тверской гос. техн. ун-т, Каф. АТП. Тверь: ТвГТУ, 2010. (УМК-Э). Сервер.-Текст: электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/105121. (ID=105121-1)
- 8. Задание на курсовую работу по дисциплине "Прикладное программное обеспечение": в составе учебно-методического комплекса / разраб. О.М. Григорьева; Тверской гос. техн. ун-т, Каф. АТП. Тверь: ТвГТУ , 2010. (УМК-КП). Сервер. Текст: электронный. 0-00. URL: https://elib.tstu.tver.ru/MegaPro/ GetDoc/Megapro/105123 . (ID=105123-1)

7.4. Программное обеспечение по дисциплине

Операционная система Microsoft Windows: лицензии № ICM-176609 и № ICM-176613 (Azure Dev Tools for Teaching).

Microsoft Office 2007 Russian Academic: OPEN No Level: лицензия № 41902814.

Пакет прикладных программ GNU Octave. Octave - это свободное программное обеспечение, лицензированное по <u>лицензии GNU General Public License</u> (GPL).

Пакет прикладных программ Mathcad Express. Бесплатная 30-дневная пробная версия. https://www.mathcad.com/en/try-and-buy/mathcad-express-free-download

7.5. Специализированные базы данных, справочные системы, электронно-библиотечные системы, профессиональные порталы в Интернет

ЭБС и лицензионные ресурсы ТвГТУ размещены:

- 1. Ресурсы: https://lib.tstu.tver.ru/header/obr-res
- 2. ЭK TвΓTУ: https://elib.tstu.tver.ru/MegaPro/Web
- 3. ЭБС "Лань": https://e.lanbook.com/
- 4. ЭБС "Университетская библиотека онлайн": https://www.biblioclub.ru/
- 5. GEC «IPRBooks»: https://www.iprbookshop.ru/
- 6. Электронная образовательная платформа "Юрайт" (ЭБС «Юрайт»): https://urait.ru/
- 7. Научная электронная библиотека eLIBRARY: https://elibrary.ru/
- 8. Информационная система "ТЕХНОРМАТИВ". Конфигурация "МАКСИ-МУМ": сетевая версия (годовое обновление): [нормативно-технические, нормативно-правовые и руководящие документы (ГОСТы, РД, СНиПы и др.]. Диск 1, 2, 3, 4. М.: Технорматив, 2014. (Документация для профессионалов). CD. Текст: электронный. 119600 р. (105501-1)
- 9. База данных учебно-методических комплексов: https://lib.tstu.tver.ru/header/ umk.html

УМК размещен: https://elib.tstu.tver.ru/MegaPro/GetDoc/Megapro/90521

8. Материально-техническое обеспечение дисциплины

При изучении дисциплины «Прикладное программное обеспечение» используется демонстрация справочного и методического материала с помощью проектора.

Лабораторные и практические занятия проводятся в компьютерных классах XT-201, где каждый студент может работать на отдельной ЭВМ.

9. Оценочные средства для проведения промежуточной аттестации 9.1. Оценочные средства для проведения промежуточной аттестации в форме экзамена

1. Экзаменационный билет соответствует форме, утвержденной Положением о рабочих программах дисциплин, соответствующих федеральным государственным образовательным стандартам высшего образования с учетом профессиональных стандартов. Типовой образец экзаменационного билета приведен в Приложении. Обучающемуся даётся право выбора заданий из числа, содержащихся в билете, принимая во внимание оценку, на которую он претендует.

Число экзаменационных билетов -15. Число вопросов (заданий) в экзаменационном билете -3 (1 вопрос для категории «знать» и 2 вопроса для категории «уметь»).

Продолжительность экзамена – 60 минут.

- 2. Шкала оценивания промежуточной аттестации в форме экзамена «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
 - 3. Критерии оценки за экзамен:

```
для категории «знать»: выше базового -2; базовый -1; ниже базового -0; критерии оценки и ее значение для категории «уметь»: отсутствие умения -0 балл; наличие умения -2 балла. «отлично» - при сумме баллов 5 или 6; «хорошо» - при сумме баллов 4; «удовлетворительно» - при сумме баллов 3; «неудовлетворительно» - при сумме баллов 0, 1 или 2.
```

- 4. Вид экзамена письменный экзамен, включающий решение задач с использованием ЭВМ.
 - 5. База заданий, предъявляемая обучающимся на экзамене.
 - 1. Аппроксимация таблично заданных функций в Excel.
 - 2. Решение СЛАУ в матричном виде в среде Excel.
 - 3. Вычисление определенных интегралов в Octave.
 - 4. Решение ОДУ модифицированными методами Эйлера.
 - 5. Символьное вычисление интегралов в Octave.
 - 6. Сплайн аппроксимация таблично заданных функций в Octave.
 - 7. Построение годографа AФЧX системы автоматического упрпвления в MathCAD.
 - 8. Постановка задачи решения ОДУ. Задача Коши.
 - 9. Умножение матриц в Excel.
 - 10.Построение графиков в MathCAD
 - 11. Синтаксис команды fmincon в Octave.
 - 12. Решение задачи ЛП в Excel.
 - 13. Решение задачи ЛП в Octave.
 - 14. Гармонический анализ периодических сигналов в Excel.
 - 15. Дискретное преобразование Фурье.

При ответе на вопросы экзамена допускается использование справочными данными, ГОСТами, методическими указаниями по выполнению лабораторных работ в рамках данной дисциплины.

При желании студента покинуть пределы аудитории во время экзамена экзаменационный билет после его возвращения заменяется.

Преподаватель имеет право после проверки письменных ответов на экзаменационные вопросы задавать студенту в устной форме уточняющие вопросы в рамках содержания экзаменационного билета, выданного студенту.

Иные нормы, регламентирующие процедуру проведения экзамена, представлены в Положении о текущем контроле успеваемости и промежуточной аттестации студентов.

9.2. Оценочные средства для проведения промежуточной аттестации в форме зачета

Учебным планом зачет по дисциплине не предусмотрен.

9.3. Оценочные средства для проведения промежуточной аттестации в форме курсового проекта или курсовой работы

Учебным планом курсовая работа (проект) по дисциплине не предусмотрены.

10. Методические рекомендации по организации изучения дисциплины.

Студенты перед началом изучения дисциплины должны быть ознакомлены с системами кредитных единиц и балльно-рейтинговой оценки, которые должны быть опубликованы и размещены на сайте вуза или кафедры.

Студенты, изучающие дисциплину, обеспечиваются электронными изданиями или доступом к ним, учебно-методическим комплексом по дисциплине, включая методические указания к выполнению лаборсторных работ и всех видов самостоятельной работы.

11. Внесение изменений и дополнений в рабочую программу дисциплины

Содержание рабочих программ дисциплин ежегодно обновляется протоколами заседаний кафедры по утвержденной «Положением о структуре, содержании и оформлении рабочих программ дисциплин по образовательным программам, соответствующим ФГОС ВО с учетом профессиональных стандартов» форме. Федеральное государственное бюджетное образовательное учреждение высшего образования

«Тверской государственный технический университет»

Направление подготовки бакалавров – 27.03.04 Управление в технических системах

Направленность (профиль) – Автоматизация и управление технологическими процессами и производствами

Кафедра «Автоматизация технологических процессов» Дисциплина «Прикладное программное обеспечение» Семестр 6

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Вопрос для проверки уровня «ЗНАТЬ» 0 или 1 или 2 балла: Гармонический анализ периодических сигналов в Excel.
- 2. Задание для проверки уровня «УМЕТЬ» 0 или 2 балла: Постройте в MathCAD 3-D график функции двух переменных:

$$f(x, y) = 2x^2 - 3xy + 5y^2.$$

3. Задание для проверки уровня «УМЕТЬ» - 0 или 2 балла: Дана модель объекта управления:

$$\dot{x}_1 = x_2 + u_1$$

$$\dot{x}_2 = -0.5x_1 - 2x_2 + 4u_2$$

Используя команду Octave **ode45**, определите реакцию ОУ на входной сигнал $u = \begin{bmatrix} 0,5\sin(t)\\0,5\cos(2t) \end{bmatrix} \text{ на интервале } t \in [0,10]. \text{ Начальные значения вектора состояния} \\ x_0 = \begin{bmatrix} 1\\2 \end{bmatrix}.$

Критерии итоговой оценки за экзамен:

«отлично» - при сумме баллов 5 или 6; «хорошо» - при сумме баллов 4; «удовлетворительно» - при сумме баллов 3; «неудовлетворительно» - при сумме баллов 0, 1 или 2.

Составитель: доцент кафедры АТП ______ П.К. Кузин Заведующий кафедрой: Б.И. Марголис